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“I propose to consider the question, ’Can machines think?”

Alan Turing



Abstract

We were originally inspired by a paper written by Alex Graves titled Generating

Sequences With Recurrent Neural Networks. More specifically, we sought to replicate

the portion that dealt with handwriting prediction.

Using the architecture of a cascading Long Short Term Memory Neural Network,

we were able to get good results when prediction the next point in a sequence of hand-

writing. The entire system was trained on a batch size of 5, unrolled for 200 time steps

and trained on sequences of (x, y, eos) o↵sets that, when plotted, represented hand-

writing. Prediction of real world values lends itself very well to probabilistic models so

the output of the Neural Network was used to parameterize a Gaussian Mixture Model

consisting of 3 components. This GMM would then output probabilistic predictions

meaning all visualizations of results consisted of various heat maps.
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Language of Neural Networks

batch - the number of samples that are propagated through the network at one time.

epoch - a full pass through the entire dataset.

perplexity - eloss, this is a di↵erent representation of loss.

step size - the degree to which the LSTMs are unrolled for recurrent nature.
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Chapter 1

Introduction to Long Short Term

Memory Networks

1.1 Basic Review of Neural Networks

Artificial Neural Networks (ANNs) are large systems of connected neural units loosely

modeled after the structure of the neurons and axons in the human brain. The core

purpose of neural networks, or machine learning, is often framed as a function approxi-

mation given training data. The goal is to fit or learn a function f(x) such that y(t) is

approximately equal to f(x(t)) for all values of t.

Neural networks are extremely useful in programming problem that are hard to

code and in recent years have grown in popularity across many fields. They are success-

fully used to solve problems in robotics, computer vision, speech recognition, classifica-

tion and many more.

1.2 Variations of Neural Networks

The core structure of a Neural Network consists of connections between all the neurons

each carrying an activation signal of varying strength. If the incoming signal to a neuron

is strong enough then the signal is permeated through the next stages of the network.

A simple neural network structure can be seen in figure 1.1. The red layer of

neurons, or nodes, acts as the input layer feeding the data into the hidden layer, whose

outputs are then fed into an output layer. Every connection between nodes carries a

weight determining the amount of information that gets passed through.

1



Chapter 1. Long Short Term Memory Networks 2

Figure 1.1: Basic Neural Network schematic

Neural Networks as a class are typically defined by the three following hyper

parameters

• The pattern of connections between all neurons

• The weights of connections between neurons

• The activation functions of the neurons

The above parameters allow for a lot of variation and creativity based on param-

eters of the problem being tackled. During our project we only tackled feedforward and

Recurrent Neural Networks (RNN) as well as a specific variation of RNN called Long

Short Term Memory units (LSTMs). For those interested in exploring more variations,

the Asimov Institute has an excellent blog post about the Zoo of Neural Networks.

1.2.1 Feedforward Neural Networks

Feedforward neural networks channel information or data in one direction. The structure

shown in figure 1.1 is that of a feedforward neural network as the connections do not

allow for the same input data to be seen multiple times by the same node. Because of

this, these structures are often used for problems in classification that map raw data

to categories. For example, the input data might be an image that the neural network

could classify as face or not a face based on the inherent patterns within the raw data

http://www.asimovinstitute.org/neural-network-zoo/


Chapter 1. Long Short Term Memory Networks 3

that constitute face or not a face. The way that these decisions are made is through

feedforward computation.

Every node outputs a numerical value that it then passes to all its successor nodes.

This numerical output is

y

j

= f(x
j

) (1.1)

where

x

j

=
X

i2Pj

w

ij

y

i

(1.2)

and f(x) is a smooth non-linear activation function that maps outputs to a rea-

sonable domain. What activation function is used is up the designers discretion. Some

common activation functions include tanh(x) or the sigmoid function.

In order to train these networks we propagate the error back through the network

starting at the output node, and minimize using stochastic gradient descent. There are

many various definitions of error, as you will see later in the paper, but for now let us

define our error simply as the sum of squared residuals between our k targets and the

output of k output nodes of the network

E =
1

2

X

k

(t
k

� y

k

)2 (1.3)

We then generate the set of all gradients of the weights with respect to the error and

minimize these gradients

g

ij

= � �E

�w

ij

(1.4)

Essentially, we are altering our weights in order to minimize their individual e↵ect on

the overall error of the outputs.

The largest hindrance of these types of neural networks is that they have no

capacity to remember. This means they fall short when trying to predict sequences. For

example, when trying to predict the last word in a sentence it is necessary to remember

the previous words in the sentence. Context is necessary to make an accurate and

relevant prediction. This is where Recurrent Neural Networks come in.



Chapter 1. Long Short Term Memory Networks 4

1.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs), unlike feedforward networks, have a capacity to

remember. This memory stems from the fact their input is not only the current input

vector but also a variation of what they output at previous time steps.

Figure 1.2: RNN Unrolling (Christopher Olah 2015)

In figure 1.2 we see a RNN module that is being unrolled for multiple time steps.

Within each time step we see a connection between modules that is passing the infor-

mation stored within the module at time step t, to the module in time step t+1. Once

again it is this passing of information that provides RNNs with their memory and gives

the network context.

An ideal RNN would theoretically be able to remember as far back as was necessary

in order to to make an accurate prediction. However, as with many things, the theory

does not carry over to reality. RNNs have trouble learning long term dependencies due

to the vanishing gradient problem. An example of such a long term dependency might be

if we are trying to predict the last word in the following sentence ”My family originally

comes from Belgium so my native language is PREDICTION”. A normal RNN would

possibly be able to recognize that the prediction should be a language but it would need

the earlier context of Belgium to be able to accurately predict DUTCH.

We train RNNs through the same method of backpropagation outlined above, with

the added wrinkle of doing it through time as well. The information that passes through

RNNs undergo a lot of multiplactions and manipulations as it traverses through many

layers. So when we try to propagate the error through these many layers we begin to

push the derivaties, or gradients, to zero. These gradients can become so small that

they cause underflow, and the networks are unable to e↵ectively learn.

Fortunately, in 1997, Sepp Hochreiter and Juergen Schmidhuber developed the

Long Short Term Memory (LSTM) unit that solved the vanishing gradient problem.
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1.2.3 LSTMs

LSTMs are specifically designed to learn long term dependencies and have no problem

doing so. Every form of RNN has repeating modules that pass information across

timesteps, and LSTMs are no di↵erent. Where they di↵er is the inner structure of each

module. A standard RNN might have a single neural network layer, but LSTMs have

four.

Figure 1.3: LSTM Module Structure (Christopher Olah 2015)

In order to understand how LSTMs learn long term dependencies let us walk

through figure 1.3 step by step. The top line is key to the LSTM’s ability to remember

and it is called the cell state C

t

.

The first neural network layer is a sigmoid and takes as input the concatenation

between the current input x
t

and the output of the previous module h
t�1

. This is coined

the forget gate as it determines what to forget in the current cell state. We piecewise

multiply the output of the sigmoid layer, f
t

= �(W
f

• [h
t�1

, x

t

] + b

f

), with the cell state

from the previous module C
t�1

, forgetting the things that it deems no longer important.

The following two neural network layers constitute the update gate. First, x
t

•h
t�1

is pushed through both a sigmoid layer and a tanh layer. The output of the sigmoid

layer, i
t

= �(W
i

• [h
t�1

, x

t

] + b

i

), determines which values to use to update, and the

output of the tanh layer, Ĉ
t

= �(W
C

• [h
t�1

, x

t

] + b

C

), proposes an entirely new cell

state. These two results are piecewise multiplied and added to the current cell state

(which we just edited using the forget layer) outputting the new cell state C

t

.

The final neural network layer is called the output gate, as it determines the

relevant portion of the cell state to output as h
t

. Once again we feed x

t

• h
t�1

through

a sigmoid layer whose output, o
t

= �(W
o

• [h
t�1

, x

t

] + b

o

), we piecewise multiply with

tanh(C
t

). The result of this multiplication determines the output of the LSTM module.

Note that the purple tanh is not a neural network layer but a piecewise multiplication

intended to push the current cell state into a reasonable domain.



Chapter 2

Background of Handwriting

Prediction

2.1 Purpose

This section seeks to cover some of the pertinent theory behind our project. Many

statistical models and deep learning modules are used throughout our project. Because

of the lack of knowledge we both had when initially starting the project, we hope to

carefully demonstrate and explain the theory behind such objects, so as to give the

readers a clear view of how each piece of the project connects and the various algorithms

that are going on behind the scenes.

Our idea with this paper is to demonstrate to someone with little deep learning

or statistical background how this model works. While Graves leaves much of the im-

plementation details up to the reader, we will hope to explicitly illustrate our design

process and the various challenges that we overcame.

2.2 Project Overview and Interest

The initial idea of this project came from a paper written by renowned computer scien-

tist, Alex Graves, who was obtaining his postdoc under Geo↵rey Hinton at the Univer-

sity of Toronto when he published this paper. Alex Graves is now a research scientist

at Google’s DeepMind. His idea with the paper, Generating Sequences with Recurrent

Neural Networks, was to learn the general patterns of some noticeable sequences prob-

abilistically, and then be able to sample from the learned probabilistic structure, hence

generating realistic sequences that were learned from. Our goals could be summarized

6



Chapter 2. Background and Overview 7

more simply than the generative portion of Graves’s model. We wanted to build a model

that reflected Graves’s model and e↵ectively predicted pen points. This project’s scope

was vast - including learning the theory behind basic machine learning and neural net-

works, probabilistic models, and a concrete grasp over the di↵erent dimensionality and

spaces that we were working with.

In more detail, Alex Graves’s paper, Generating Sequences with Recurrent Neural

Networks, basically walks through the general applicability of Long-Short-Term-Memory

networks. LSTMs are an e↵ective solution to some of the basic issues that recurrent

neural networks face, as described above in section 1.3. Graves then introduces his

overall model, which is a type of mixture density network that predicts probabilistically

based on the outputs of an LSTM cascade. With his constructed model, Graves then

walks through several applications. Namely, text prediction using Wikipedia html as

a basic input, handwriting prediction, and handwriting synthesis. The vast majority

of our thesis will focus on handwriting prediction, and the ability to generate realistic

looking handwriting.

2.3 Theory of Model Components

As this was our first introduction to deep learning and some of the various probabilistic

models that Graves used casually in his paper, time was spent to fully understand and

construct each of the modules used in Graves overall LSTM cascade model. In this

section, the theory and basic abilities of each model will be explained more thoroughly.

2.3.1 Gaussian Mixture Models

Gaussian mixture models are an unsupervised technique for learning a probabilistic

distribution of some unlabeled data. The concept of GMMs were formalized in 1977 by

Arthur Dempster, Nan Laird, and Donald Rubin [Wikipedia, 2017b].

A few things about GMMs are important to note here:

• The data is not sequential

• The method is unsupervised

• There is no prediction here

At a high level, what happens with this algorithm is that a number of Gaussians

are specified by the user, and the algorithm learns various parameters that represent
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the data while maximizing the likelihood of seeing such data. If we have k components,

then for a multivariate Gaussian mixture model, we will learn k means, k variances, k

mixture weights, k correlations through expectation maximization.

Expectation maximization (EM) is at the heart of the algorithm. This process

drives us to iteratively from our first randomly initialized means to the statistical best

values for the means. In essence, it computes the probability for each point of being

generated by each Gaussian component. The EM algorithm then tweaks our means,

variances, mixture weights, and correlations so that the maximum likelihood is reached.

The E-step of the EM algorithm stands for the expectation step, which is creating this log

likelihood function that estimates the probabilities for the given parameters. The M-step

is the maximization step, which includes taking derivatives of the likelihood function with

respect to all known values. The implementation details will be discussed in Chapter

3. The key summary is that for given data, the means, variances, mixture weights

and correlations are learned. This therefore lets you probabilistically represent your

data with a discrete few parameters - in essence, estimating the underlying probability

distribution of your data.

2.3.2 Mixture Density Networks

Mixture Density Networks (MDNs) are an extension of GMMs. The concept was devel-

oped in 1994 by Microsoft researcher Christopher Bishop in his paper, Mixture Density

Networks. The idea is relatively simple - we take the output from a neural network

and parametrize the learned parameters of the GMM. The result is that we can infer

probabilistic prediction from our learned parameters. If our neural network is reason-

ably predicting where the next point might be, the GMM will then learn probabilistic

parameters that model the distribution of the next point. This is di↵erent in a few key

aspects. Namely, we now have target values because our data is sequential. Therefore,

when we feed in our targets, we minimize the log likelihood based on those expectations,

thus altering the GMM portion of the model to learn the predicted values.

The process of a mixture density network can be represented by the following

figure:

There are specific activation functions that we force our learned network parame-

ters through so that the results are reasonably accurate. Below we show out the output

from the neural network parametrizes our vectors y
t

.

y

t

= (e
t

, {⇡j

t

, µ

j

t

,�

j

t

, ⇢

j

t

}M
j=1

) (2.1)
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Figure 2.1: Process flow diagram for a MDN (Christopher Bishop 1994)

e

t

=
1

1 + exp(ê
t

)
) e
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j
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0

t

)
) ⇡

j

t
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⇡
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= 1 (2.3)

µ

j
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= µ̂

t

j

) µ

j
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2 R (2.4)

�

j

t

= exp(�̂t

j

) ) �

j

t

> 0 (2.5)

⇢

j

t

= tanh(⇢̂j
t

) ) ⇢

j

t

2 (�1, 1) (2.6)

Let’s walk through each activation function. e

t

is an end-of-stroke probability.

This is specific to our model, but we want to push it into the range of (0,1) because that

is the range of any given probability. Similarly, for our ⇡’s, these are our mixture weights.

We therefore push them through the softmax activation function so that the weights

collectively sum to 1. The means, µ, we do not enforce any activation function because

we want to let them span any given scalar value. The variances � we push through the

exponential activation function so as to only allow positive variances (because variance

cannot be negative). Finally, our correlations we force through the hyperbolic tangent

function. This allows the range of the rhos to be contained in (-1,1) exclusive. As we

will touch on later, this gave rise to a few di↵erent issues.

We want to predict what the next input is going to be given our output vector.

Essentially, this is asking for Pr(x
t+1

| y
t

). There is a decent amount of statistical backing

that goes into evaluating the probability distribution for this bivariate Gaussian mixture

model. While the rigorous proof will not be shown, the equation for the conditional

probability is shown below:

Pr(x
t+1

| y
t

) =
MX

j=1

⇡

t

j

N (x
t+1

| µt

j

,�

t

j

, ⇢

t

j

) (2.7)
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where

N (x | µ,�, ⇢) = 1

2⇡�
1

�

2

p
1� ⇢

2

exp


�Z

2(1� ⇢

2)

�
(2.8)

and

Z =
(x

1

� µ

1

)2

�

2

1

+
(x

2

� µ

2

)2

�

2

2

� 2⇢(x
1

� µ

1

)(x
2

� µ

2

)

�

1

�

2

(2.9)

This equation is the generalized version of calculating the conditional probability for

a bivariate Gaussian distribution. This mathematical construction and formula can be

derived as shown onWolfram’s Mathworld. However, because we also have a handwriting

specific end-of-stroke parameter, we modify our conditional probability formula to result

in our final calculation of:

Pr(x
t+1

| y
t

) =
MX

j=1

⇡

t

j

N (x
t+1

| µt

j

,�

t

j

, ⇢

t

j

)

8
<

:
e

t

if (x
t+1

)
3

= 1

1� e

t

otherwise
(2.10)

This is our final conditional probability output from the MDN. Note, that once

we have this, performing EM is simple as our loss function that we choose to minimize

is just:

L(x) = �
TX

t=1

log Pr(x
t+1

| y
t

) (2.11)

2.3.3 Stacked LSTM and MDN

We are now ready to talk about the complete model that Graves creates in order to

perform handwriting synthesis. We can use an MDN to generate a probablistic prediction

- however now, we want our neural network to actually be a cascade of LSTMs. If there

is any uncertainty about how an LSTM works, please refer to Section 1.2.3. Instead of

just using a single LSTM for our neural network, we can actually use a cascade. The

structure of the model can be seen in Figure 2.1, which is taken directly from Graves’s

paper.

The LSTM cascade buys us a few di↵erent things. As Graves aptly points out, it

mitigates the vanishing gradient problem even more greatly than a single LSTM could.

This is because of the skip-connections. All hidden layers have access to the input and

all hidden layers are also directly connected to the output node. As a result, there are

less processing steps from the bottom of the network to the top.
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Figure 2.2: Architecture of the total model, where the hidden layers represent LSTM
cells (Alex Graves 2013)

While Graves also does not note on this, the cascade of LSTMs also buys us a

dimensionality increase. If we say we have m = 3 hidden layers, we can follow the skip

sequences through to keep track of dimensionality.

Let’s observe the x
t�1

input. h1
t�1

only has x
t�1

as its input which is in R3 because

(x, y, eos). However, we also pass our input x
t�1

into h

2

t�1

. We assume that we simply

concatenate the original input and the output of the first hidden layer. Because LSTMs

do not scale dimensionality, we know the output is going to be in R3 as well. Therefore,

after this concatenation, the input into the second hidden layer will be in R6. We can

follow this process through and see that, the input to the third hidden layer will be in

R9. Finally, we concatenate all of the LSTM cells (i.e. the hidden layers) together, thus

getting a final dimension of R18 fed into our MDN. Note, this is for m = 3 hidden layers,

but more generally, we can observe the relation as

final dimension = k

m(m+ 1)

2
(2.12)

We note that this comes from a simple geometric sum multiplied by the original input

of the first dimension. Here k is the dimension of x
t�1

and m is the depth of our hidden

layer. We can see that if we substitute in k = 3 and m = 3, we result in 18 as our final

dimension.
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The increase in dimensionality is beneficial for our model because it expands our

representative space. R3 might not be a large enough space for our inputs to be ex-

pressed, but by combining them with the LSTM outputs we can recognize a larger

combination of inputs more e↵ectively.

Now, that we have increased the dimensionality, we can feed the output from our

LSTM cascade into the GMM in order to build a probabilistic prediction model for the

next stroke. With this in mind, the GMM will then be fed the actual next point, in

order to create some idea of the deviation so that the loss can be properly minimized.

In Figure 2.1, the dashed lines from the y

t�1

’s to the x

t

’s represent the MDN at work.

We are generating some conditional probability of the next input that we are going to

see.



Chapter 3

Creating the Model

With both the theory of LSTMs carefully explained and the math behind the di↵erent

building blocks of Graves’s model explained, we are now ready to discuss the imple-

mentation details of our project. We arrived at our final model with a good project

design after having built all of the individual components, we were easily able to link

them together without much alteration to the actual code. Various hyperparameters

were actually kept the same, with the occasional input dimension being altered to glue

models together.

3.1 Gaussian Mixture Model

To visualize and ensure that we fully understood the Gaussian mixture models, we first

solved the problem with some toy data - namely, the Iris flower dataset. We looked

at two dimensional data in an e↵ort to simulate the math behind a bivariate Gaussian

distribution. We compared the sepal length to the sepal width and tried to see how best

to visualize our data.

One thing that we did frequently take advantage of throughout of our program was

broadcasting and playing with dimensionality. Broadcasting is a feature in both numpy

and tensorflow that allows di↵erent sizes tensors to be broadcast to one similar shape.

We therefore created our input variable x to be “pseudo”-3-dimensional. We added an

extra dimension so that we could allow broadcasting to work e↵ectively. Essentially, our

input then has shape: (?, numDim, 1), where ? refers to the number of input examples

we are given.

We then randomly initialize all of our mixture parameters. We take careful note

to let the pis be uniform at the start, so that we do not favor one distribution over the

13
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Figure 3.1: Raw data from the Iris flower data set. Note, the lengths and widths
were mean shifted.

other. We perform the appropriate reductions and summations, all whilst keeping the

data vectorized so as to not perform costly functions. Part of the large benefit of using

Python is that things can be handed o↵ to numpy and tensorflow which have much

faster behind the scene methods written in C++ and C. This allows for both ease of

coding, while still getting quick and e�cient results.

Due to the lightness of the math and the little variables that we actually have

to train and learn, we were able to compute train over the entire dataset for 10000

iterations. This is not possible in later models, simply because of the time that training

would have required.

We then compared the results obtained by tensorflow to the results obtained by

an sklearn example. The raw data that we were looking at is shown in Figure 3.1. The

comparison between sklearn and tensorflow is also shown.

We can verify the correctness of the computation written in Tensorflow. We can

see that one of the local minima that Tensorflow converges to in training also seen in
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Figure 3.2: Sklearn Predicted GMM
Figure 3.3: Tensorflow Predicted

GMM

Figure 3.4: Overlaid dataset showing comparison between Tensorflow and Sklearn.

sklearn’s version of the Gaussian mixture model through Figure 3.4. The result gave us

strong confirmation that we had implemented the GMMs correctly.

It is also interesting to demonstrate the idea of multiple local minima. This is an

optimization problem at heart, but there are also several local minima that the optimizer

can fall into. Note, for this example, RMS prop was used to minimize the loss. If initially

looking at the raw data seen in Figure 3.1, it seems intuitive that the clump of data near

the left hand side of the graph could be represented by a single Gaussian. However, the

clump of data on the right of the graph is a more challenging task. There are multiple

ways that one could envision on drawing Gaussians to best represent the data. Similarly,

our GMM program also encodes this logic.
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Figure 3.5: Local Minima 1

Figure 3.6: Local Minima 2
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3.2 Mixture Density Network

The mixture density network, or MDN, was constructed at first using a basic neural

network. We constructed the MDN using a hidden layer that scaled the input to R30, a

space that we decided on almost arbitrarily. This was simple to implement in tensorflow,

constructing simply a matrix and bias vector where the weights were learned and scaling

accordingly. In other words, this could be accomplished in a single line of code (after

instantiating the variables randomly) like such:

self.h = h = tf.nn.tanh(tf.add(tf.matmul(x, wh), bh))

Note the appropriate shapes. This can be represented as the nonlinear operation:

h|{z}
(?⇥nhid)

= x|{z}
(?⇥(nstep·ndim)

wh|{z}
(nstep·ndim)⇥nhid

+ bh|{z}
nhid

(3.1)

And because of broadcasting the dimensionality of the addition operation works com-

pletely fine. So in other words, if we have a step of three, an input dimension of two,

and a hidden size of 30, then the following operation would look like:

h|{z}
?⇥30

= x|{z}
?⇥6

wh|{z}
6⇥30

+ bh|{z}
30

(3.2)

And we can see that the dimensionality works out perfectly. We then apply the normal

rules that are appropriate in order to learn the various parameters of the underlying

distribution of the data. Recall, this was a softmax activation for the mixture weights,

exponential for the variances, etc. At this point, we still had not added in an addi-

tional learned parameter for the end of stroke because we were focusing solely on two

dimensional sample data.

At this point, we also had not yet trained on our actual handwriting data for fear

of over-complicating the beginning processes of our model. We wanted to ensure that

this basic model was doing what we wanted on our sample data. We therefore created

some sample data that had some similarities to basic handwriting - that is, loops and

straight hard lines. For reference, see Figure 3.7 and Figure 3.8.

The results from the MDN prediction were successful to a large degree. Note, both

dropout and random noise were added here so that our model would learn more of the

general characteristics of the data rather than memorizing the data exactly. The dropout

rate was 0.85, meaning that for every epoch 15 percent of the total weight connections

would be randomly chosen to be temporarily severed. Dropout is an e↵ective way to

bolster the model and prevent overfitting. Note, that our model is probabilistic so the

model’s predictions are represented as a heat map. We queried on a meshgrid to test
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Figure 3.7: MDN Sample Data 1 Figure 3.8: MDN Sample Data 2

the probability of seeing certain regions over others. For some convincing results, see

figures 3.9 and 3.10. In addition, there are other visualizations in Appendix C.

Figure 3.9: MDN Prediction Viz 1 Figure 3.10: MDN Prediction Viz 2

With these visualizations created, we were confident that we understood the struc-

ture of a Mixture Density Network and we could replace our hidden layers. We thus

moved onto the Stacked LSTM cell.

3.3 Stacked LSTM

Before attempting to simply replace the hidden layer in our MDN with the LSTM cascade

outlined in section 2.3.3, we focused on building the LSTM cascade. We continued to

use the same shape of sample output data as above - the loops and jagged lines - but

duplicated them many times creating a longer stream of data, as LSTMs should have

no problem learning long term dependencies.

When building our model in tensorflow it was necessary to pay special attention

to how we achieved the dimensionality increase as well as how we updated the individual
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states of the LSTMs and carried these states through timesteps between modules. In

order to achieve the dimensionality increase we looped over our LSTMs, first starting

with a base case if it was the initial input, and then iteratively concatenating the output

of the LSTM with the initial input vector which was passed as input into the LSTM one

layer up. Updating the states was done in the same loop. We stored the states of each

LSTM in a state list, and as we were determining the input to the next cell, we were

concurrently updating the state of the LSTM currently being addressed in the loop.

When we were training our LSTM model we settled on a batch size of twenty and

a step size of eight. We continued to implement dropout as well as adding random noise

after every epoch in order to avoid overfitting.

Figure 3.11: LSTM Prediction Viz 1 Figure 3.12: LSTM Prediction Viz 2

Figure 3.13: LSTM Prediction Viz 3 Figure 3.14: LSTM Prediction Viz 4

From Figures 3.11-3.14 we clearly see that our LSTM cascade is learning the

general shape of the input data. After only 250 epochs the cascade has some idea of

the general shape of the data but still makes mistakes and seems to get lost at certain

points. However, once it reaches around 1000 epochs it does a much better job. In both

examples we see it loosing its way near the end of the sequences. This happens because
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the end of all the sequences was treated as validation data, meaning it was data it had

not been trained on.

The outcome of these figures gave us the confidence necessary to move on to the

next phase - connecting our LSTM cascade and MDN.

3.4 Final Model - Stacked LSTM and MDN

In order to create our final model we took our MDN model, removed the hidden layer

of 30 nodes, and replaced it with our LSTM cascade. The largest obstacle we overcame

to achieve this step was concerned with variable reuse. When we made our LSTM

cascade module certain variables were reused across time steps - most importantly those

pertaining to the states - however, this had not yet been a necessary function of our

MDN. This meant when initially coupling the two classes, we were generating new MDN

parameters after every timestep rather than carrying them through every timestep.

Once our final model was built, we were finally able to train on our handwriting

data. We used a batch size of 5, step size of 200 and three Gaussians. Note, that once

again our model is probabilistic so the model’s predictions are represented as a heat

map. We always queried on validation data, meaning our model have never before seen

the data.

Figure 3.15: Final Model Prediction: ”Did Not” at Epoch 0

In Figures 3.15 and 3.16 we are writing out the words did not and are asking our

model to predict the next point in the letter t. In Figure 3.15 we see that our model

predicts a large probability space but as we train longer by running through more epochs,

shown in figure 3.16, the probability space gets much tighter and our model becomes

very confident about where the next point is going to land. Note that the predictions

not only get tighter but also move down as our model learns the proper spacing.
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Figure 3.16: Final Model Prediction: ”Did Not” at Epoch 60

Figures 3.17 and 3.18 once again demonstrate learning but this time in the other

direction. We are writing out work and give our model the first point of the letter k.

Initially our model is very confident about where it thinks the next point is going to be,

but as it runs over the data more and more times it learns that the probability space of

the second point in a letter is much larger than it originally thought, which is a logical

progression. We would not expect our model to know perfectly where the second point

would be.

Figure 3.17: Final Model Prediction: ”Work” at Epoch 0

Once we were convinced that our model was training successfully we allowed it

to run overnight and saved a final trained model that would be used for any further

querying and visualizations.
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Figure 3.18: Final Model Prediction: ”Work” at Epoch 30

3.5 Extraneous

3.5.1 Data

Our handwriting data came from the IAM Online Handwriting Database. 657 writers

were asked to use a smart tablet to write down lines of the Lancaster-Oslo-Bergen text

corpus for British English, resulting in a total of 11035 lines of handwriting in our

training set, and 580 lines in our validation set. The data came in XML format where

every line was a separate folder, and every line was subsequently broken up into strokes.

The raw data was (x, y, eos) points where eos was the binary end-of-stroke marker. All

our training was done on o↵sets as they are independent of starting point, and all lines

were treated as separate sequences as there were limited, or no, dependencies between

lines.

3.5.2 Saving the Model

At some point due to the sheer size of our model and the length that training took (⇠
12 hours for a reasonable loss), we needed to be able to quickly load in a trained model

and query for interesting results. As a result, Tensorflow’s tf.train.Saver() was used

excessively. We would store checkpoints for various runs and after a multitude of epochs,

we would then load them in query our model. We then specified in our program that

the second command line argument would be the checkpoint of the various model that

we wanted to load in.

Another check that we implemented to confirm that we had successfully loaded

in the model was to print out the global variables after the restore. This was done

by iterating over tvars = tf.global variables(). Note, that Tensorflow will create
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Figure 3.19: Example Lines of Data

duplicate variables for the ones that have been trained. We were not sure where the

source of this came from, besides the suspicion that Tensorflow creates a slightly modified

version of a variable if it is being optimized.
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Future Work and Extensions

4.1 Current Model

While our current model does e↵ectively learn how handwriting is being generated and is

strong with its predictive ability, we were unable to get the model to sample e↵ectively.

This concept was proposed by Graves with the idea that because the model learned prob-

abilistically what handwriting generally looks like, that by sampling from the learned

distribution and feeding in the outputs the model would actually generate handwriting.

However, for multiple reasons, including simple lack of memory and training time, we

were not able to e↵ectively generate handwriting.

An obvious extension from generating handwriting would by synthesizing hand-

writing, which is one of the huge attractions from the Graves paper. He is able to modify

his architecture to have a window which learns the dependencies between certain let-

ters. This would be an interesting extension for future E90s as the architecture of the

system is rather varied and also allows for exploration into convolution and the power

that brings.

4.2 Potential Other Models

Another interesting idea that Graves proposes is simulating this model and architecture,

but instead of using handwriting data, using audio signals. With this idea, it might be

possible for the model to learn to talk convincingly at random. With a slight modification

to the model, it could learn the dependencies between words, similar to how Graves’s

modified model learned how to synthesis handwriting.

24
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Another possible extension that we were curious about is the possibility of ex-

tending this model with other languages. This concept hinges on a few di↵erent things

- namely, the data source available, but also the regularity of how the characters of the

language are constructed. For example, it might be hard for a language that does not

have a set alphabet because of the di�culty to simulate strokes.
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Software Details - Tensorflow

Our programs were implemented in Python 2.7, although we did use various future

imports so that our code would be compatible with Python 3.0+. The version of Ten-

sorflow used was version 0.11. Note, that from when we pip installed Tensorflow to

finishing our E90, the most up to date Tensorflow version is now 1.1. Because of the

numerous updates, finding reasonable documentation as well as version control was a

challenge in and of itself.

More generally however, Tensorflow introduces a new sort of programming paradigm

that both authors struggled with. In Tensorflow, there are two steps to a successful pro-

gram:

1. Building your computational graph

2. Running your computational graph

While in initially this may sound relatively easy, there are numerous complexities that

need to be fully understood before feeling comfortable with Tensorflow. The definition

of a computational graph should also be elaborated on. A computational graph is a

graph that represents the orders of operation and dependencies of your program. Now,

there is no simple + operation, rather there is an add node that is created. Tensorflow

essentially creates this graph where the nodes are operations or tensors and the edges

show the connections and or dependencies of the objects.

This is e↵ective for multiple reasons, but e↵ective for machine learning because the

order of operations is very clear. Backpropagation can happen e�ciently and is entirely

abstracted away because the dependency of variables is baked into the program itself.

Therefore computing partial derivatives on the fly becomes a no brainer that Tensorflow

can execute e�ciently.

26
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One of the most obvious discomforts with Tensorflow was the inability to do simple

print debugging. All of the data is stored as a Tensor object. As a result, when you

print something out, the value has not been computed yet and all you see is a tensor

of a various shape and size. While this can be e↵ective for checking dimensionality

conversions and reductions, it is hard to have an idea of the actual values without

actually running your computational graph and then pulling out specific values.

There was generally a lack of good tutorials that walked through Tensorflow.

Google’s own Tensorflow tutorials don’t explicitly go into this structure and depen-

dency graph. As a result, the debugging process was elongated because of the inability

to debug like a normal program. Certain things like the QueueRunner class were not

easily explained from the documentation. Small details like improper initialization of a

QueueRunner variable would lead to your computational graph seizing to do anything

at all. No error would be thrown, the graph would seemingly loop forever.

However, by the end of the project, both authors felt immensely more comfortable

working with Tensorflow and manipulating data. Both hope to utilize Tensorflow on

future projects.
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Hardware Details - Conway

We were lucky enough to be able to use our advisor, Matt Zucker’s desktop. The

OS installed was Ubuntu 14.04.5 LTS. We installed Tensorflow v0.11 through a virtual

environment so we could preserve our version if we had to download Tensorflow again.

The computer was conned ”Conway”, which we commonly referred to and sshed into

or scped from.

Conway provided a dramatic speedup because of its sole purpose as well as the

GPU being fully enabled. A large benefit of Tensorflow is its ability to automatically

check and perform computation on the GPU if it is accessible. While we simply had a

CPU enabled version of Tensorflow downloaded on their computers, this rapidly became

unable to e�ciently burn through the models due to the size of the data provided.

While there were various hyperparameters that could have been modified in order

to change the duration of training, the final model with the entire training dataset still

would have taken up to near 70 days to make 2500 passes through the data. On our

computers, this same process would have taken on the order of 229 days.

28
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Other Visualizations

Here are some other visualizations from the MDN with solely a hidden layer.

Figure C.1: Sample Prediction from MDN

29
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Figure C.2: Sample Prediction 2 from MDN
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Code

D.1 MDN Class Code

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

import sys

# Prediction output dimension

output_dimension = 2

# Make everything float32

d_type = tf.float32

class MDN:

def __init__(self, input_data_from_lstms, targets, final_dimension_from_lstm, is_training):

# The input is now longer raw data

# The input is now the output of our LSTMs

# We will use this as a module in our model

self.NHIDDEN = 30

self.NCOMPONENTS = 3

self.STEP = final_dimension_from_lstm

self.ndim = output_dimension

self.data = input_data_from_lstms

self.iterations = 8000

self.x = x = input_data_from_lstms

’’’ Here, we are building the MDN’’’

# Setting up the Pi’s (they are one dimensional)

w_pi = tf.get_variable(name = ’w_pi’, initializer = tf.random_normal(

[final_dimension_from_lstm, self.NCOMPONENTS], dtype = d_type))

b_pi = tf.get_variable(name = ’b_pi’, initializer = tf.random_normal(
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[self.NCOMPONENTS], dtype = d_type))

p = tf.add(tf.matmul(x, w_pi),b_pi)

pis = tf.exp(p)

pis = pis/tf.reshape(tf.reduce_sum(pis, axis=1), [-1, 1])

# Setting up the correlations

w_corr = tf.get_variable(name = ’w_corr’, initializer = tf.random_normal(

[final_dimension_from_lstm, self.NCOMPONENTS], stddev = 0.2, dtype = d_type))

b_corr = tf.get_variable(name = ’b_corr’, initializer = tf.random_normal(

[self.NCOMPONENTS], stddev = 0.2, dtype = d_type))

precorr = tf.add(tf.matmul(x,w_corr), b_corr)

corr = tf.tanh(precorr) # Shape (?, number of components) = (?, 3)

# Setting up the means

w_mu = tf.get_variable(name = ’w_mu’, initializer = tf.random_normal(

[final_dimension_from_lstm, self.NCOMPONENTS*self.ndim], dtype = d_type))

b_mu = tf.get_variable(name = ’b_mu’, initializer = tf.random_normal(

[self.NCOMPONENTS*self.ndim], dtype = d_type))

# no activation function for the mus

mu = tf.add(tf.matmul(x,w_mu),b_mu) # Shape (?, num comp * num dimensions) = (?,6)

# Setting up sigma and variance

w_sigma = tf.get_variable(name = ’w_sigma’, initializer = tf.random_normal(

[final_dimension_from_lstm, self.NCOMPONENTS*self.ndim], dtype = d_type))

b_sigma = tf.get_variable(name = ’b_sigma’, initializer = tf.random_normal(

[self.NCOMPONENTS*self.ndim], dtype = d_type))

sigma = tf.add(tf.matmul(x,w_sigma),b_sigma)

sigma = tf.exp(sigma) # Shape (?, num comp * numb dimensions) = (?, 6)

# end of stroke parameter

eos = tf.get_variable(name = ’eos’, initializer = tf.random_normal([1], dtype = d_type))

self.eos = eos = tf.divide(1.0, tf.add(1.0,tf.exp(eos)))

’’’ Here we are going to build the mixture probabilites’’’

sum_of_pis = tf.reduce_sum(pis)

# Target values

xy_targets = tf.slice(targets, [0, 0], [-1, 2])

eos_targets = tf.slice(targets, [0, 2], [-1, 1])

self.actual = actual = tf.reshape(xy_targets, [-1, 1, self.ndim])

# Need to first do some dimensionality manipulation

# specifically for mu and sigma

# need to reshape with the 3 first, so that our x1 and x2 points get multiplied correctly

mu = tf.reshape(mu, [-1, 3, 2])

sigma = tf.reshape(sigma, [-1, 3, 2])
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# The output we feed into this function should be that from the hidden layers

var = tf.mul(sigma,sigma) # Shape (?, 3, 2)

# Compress along the number of gaussians so that we still have the shape: 1 x 3 )

s1s2 = tf.reduce_prod(sigma, axis=2) # Shape: (?,3)

# s1s2 = tf.reshape(s1s2,[-1]) # Shape: (3,) # CHECK SHAPE HERE

# deviation from mean is [?, n_components]

# so x is going to be like 150 x 2 and then mus is going to be 3 x 2

# actual - (?, 2, 1)

# mu - (?, 6)

dev = tf.sub(actual,mu) # Shape: (?, 3, 2)

# Shape explanation: we have a bunch of sequences and we have x and y points

# for three different components

# Have to build Z equations first (eqn 25)

# Broadcasting works - ? x 2 x 3

z12_before = tf.div(tf.mul(dev,dev),var)

# shape above: (?, 2, 3)

z12 = tf.reduce_sum(z12_before, axis=2)

# shape above: (?, 3)

# dev is ? x 3 x 2. the six comes from numberofcomp * number of dimensions

# after reduce prod it’s ? x 3 which is good.

# six is good because we have three components and each has an x and a y!!

reduce_dev = tf.reduce_prod(dev, axis=2) # Shape: (?, 3)

# z3 is going to be (?, 3)

# this math also works out and makes sense

z3 = tf.div(reduce_dev*corr*2, s1s2)

Z = z12 - z3

# Building Normal Distribution (eqn 24)

normalizer = (2.0 * np.pi * s1s2) * tf.sqrt(1.0-tf.mul(corr,corr))

expon_part = tf.exp(tf.div(-Z, 2.0 * (1.0 - tf.mul(corr,corr))))

N = tf.div(expon_part, normalizer) # Shape: (?, 3)

# Building conditional probability (eqn 23)

# overall mixture probabilities has shape [?]

N_by_pis = tf.mul(N,pis)

self.N_by_pis = N_by_pis

eos_operator = tf.mul(eos,eos_targets) + tf.mul(1.0-eos, 1.0-eos_targets)

self.eos_operator = eos_operator

N_by_pis_by_eos = tf.mul(N_by_pis, eos_operator)

self.mixture_prob = mixture_prob = tf.reduce_sum(N_by_pis_by_eos, axis=1)

def compute_loss(self):

mixture_prob = self.mixture_prob
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negative_log_odds = -tf.log(tf.maximum(mixture_prob,1e-20))

loss = tf.reduce_sum(negative_log_odds)

# log prob flat array batch size by num steps

# corrected loss

# reshape to batchsize x num steps

# elementwise product with erreweight

return loss, negative_log_odds

def return_mixture_prob(self):

return self.mixture_prob

D.2 LSTM Code

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

from collections import namedtuple

import sys

import os

from MDNClass import MDN

from DataLoader import DataLoader

from gmm_sample import *

# Choose 1 or 2 for different ydata graphs

PLOT = 1

# Make everything float32

d_type = tf.float32

# Batch size for training

train_batch_size = 10

# Number of steps (RNN rollout) for training

train_num_steps = 250

# Dimension of LSTM input/output

hidden_size = 3

# should we do dropout? (1.0 = nope)

train_keep_prob = 0.80

# number of training epochs

num_epochs = 1000

# how often to print/plot

update_every = 10
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# how often to save

save_every = 1

# initial weight scaling

init_scale = 0.1

# Number of things in our cascade

steps_in_cascade = 3

# Input dimension

input_dimension = 3

# Handle sequencing or not

handle_sequences_correctly = True

# do xy offsets or not

do_diff = True

# learning rate

learning_rate = 1e-4

# do we want gifs?! yes?

CREATE_GIFS = False

# do we want to generate handwriting

GENERATE_HANDWRITING = True

# do we want to visualize with tensorboard

CREATE_TENSORBOARD = False

######################################################################

# Helper function for below

def get_xy_data(n):

u = np.arange(n)*0.4 + np.random.random()*10

if PLOT == 1:

x = u

y = 8.0*(np.abs((0.125*u - np.floor(0.125*u)) - 0.5)-0.25)

else:

x = u + 3.0*np.sin(u)

y = -2.0*np.cos(u)

x -= x.min()

y -= y.min()

return x, y

######################################################################

# Get training data -- the format returned is xi, yi, 0 except for new

# "strokes" which are xi, yi, 1 every time the "pen is lifted".

def get_data(data):

cur_count = 0

all_data = []

all_sequence_info = []
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subsequence_index = 0

for i in range(len(data)):

sequence = data[i]

length_sequence = len(sequence)

# sequence info has two columns

sequence_info = np.zeros((length_sequence,2),dtype = int)

# first column is all ones expcet for 0 for the very first point in sequence

sequence_info[0,0] = 0

sequence_info[1:,0] = 1

# second column just holds which subsequence we are on -- not used for training

# used to visualize rows in PDFs

sequence_info[:,1] = subsequence_index

subsequence_index += 1

all_sequence_info.append(sequence_info)

all_sequence_info = np.vstack(tuple(all_sequence_info))

all_data = np.vstack(tuple(data))

return all_data, all_sequence_info

######################################################################

class Input(object):

def __init__(self, posdata, seqinfo, config):

batch_size = config.batch_size

num_steps = config.num_steps

self.posdata = posdata

self.seqinfo = seqinfo

with tf.name_scope(’producer’, [posdata, batch_size, num_steps]):

# Convert original raw data to tensor

raw_data = tf.convert_to_tensor(posdata, name=’raw_data’, dtype=d_type)

# Convert sequence continuations to tensor - just want for column

raw_seq = tf.convert_to_tensor(seqinfo[:,0], name = ’sef_info’, dtype=d_type)

# These will be tensorflow variables

data_len = tf.size(raw_data)//3

batch_len = data_len // batch_size

epoch_size = (batch_len - 1) // num_steps

# Prevent computation if epoch_size not positive

assertion = tf.assert_positive(

epoch_size,

message="epoch_size == 0, decrease batch_size or num_steps")
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with tf.control_dependencies([assertion]):

epoch_size = tf.identity(epoch_size, name="epoch_size")

# Truncate our raw_data and reshape it into batches

# This is just saying grab as much of it as we can to make a clean reshaping

data = tf.reshape(raw_data[:batch_size*batch_len, :],

[batch_size, batch_len, 3])

seq = tf.reshape(raw_seq[:batch_size*batch_len],

[batch_size, batch_len])

# i is a loop variable that indexes which batch we are on

# within an epoch

i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()

# each slice consists of num_steps*batch_size examples

x = tf.slice(data, [0, i*num_steps, 0], [batch_size, num_steps, 3])

y = tf.slice(data, [0, i*num_steps+1, 0], [batch_size, num_steps, 3])

preserve_state = tf.slice(seq, [0, i*num_steps], [batch_size, num_steps])

err_weight = tf.slice(seq, [0, i*num_steps+1], [batch_size, num_steps])

# Assign member variables

self.x = x

self.y = y

self.epoch_size = ((len(posdata) // batch_size)-1) // num_steps

self.preserve_state = preserve_state

self.err_weight = tf.reshape(err_weight, [batch_size, num_steps, 1])

######################################################################

# Class of Cascading LSTMs

class LSTMCascade(object):

def __init__(self, config, model_input, is_train, is_sample=False, external_targets=None):

# Stash some variables from config

hidden_size = config.hidden_size

batch_size = config.batch_size

num_steps = config.num_steps

keep_prob = config.keep_prob

# Scale factor so we can vary dataset size and see "average" loss

# Do this in case we’re just looking at a single point and we’re querying

self.loss_scale = batch_size * num_steps * model_input.epoch_size

# Stash input

self.model_input = model_input

# we don’t need to reshape the data!

if is_sample:

self.lstm_input = tf.placeholder(tf.float32, shape = [1,1,3])

model_input.y = tf.zeros(shape=[1,1,3])

else:

self.lstm_input = model_input.x
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# this is going to be the final dimension

# this is always even

final_high_dimension = input_dimension * steps_in_cascade * (steps_in_cascade+1) // 2

# note: input dimension is equivalent to the hidden size of the LSTM cell

hidden_size = input_dimension

# this will hold all of our cells

lstm_stack = []

# this will hold all of our states as it goes

self.state_stack = []

# this will hold the initial states

init_state_stack = []

# This will reduce our final outputs to the appropriate lower dimension

# Make weights to go from LSTM output size to 2D output

w_output_to_y = tf.get_variable(’weights_output_to_y’, [final_high_dimension, 2],

dtype=d_type)

# we need to # LSTMS = # steps in cascade

for i in range(steps_in_cascade):

# Make an LSTM cell

lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(

hidden_size * (i+1), forget_bias=0.0,

state_is_tuple=True)

# Do dropout if needed

if is_train and keep_prob < 1.0:

print(’doing dropout with prob {}’.format(config.keep_prob))

lstm_cell = tf.nn.rnn_cell.DropoutWrapper(

lstm_cell, output_keep_prob=keep_prob)

initial_state = lstm_cell.zero_state(batch_size, d_type)

lstm_stack.append(lstm_cell)

init_state_stack.append(initial_state)

self.state_stack.append(initial_state)

# cache our initial states

self.initial_state = init_state_stack

# Need an empty total output list of ys

outputs = []

# we need this variable scope to prevent us from creating multiple

# independent weight/bias vectors for LSTM cell

with tf.variable_scope(’RNN’):

# For each time step

for time_step in range(num_steps):
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# This is y_i for a single time step

time_step_output = []

# Prevent creating indep weights for LSTM

if time_step > 0:

tf.get_variable_scope().reuse_variables()

# model_input.preserve_state is a vector of 0’s or 1’s corresponding

# to 0 means reset LSTM, 1 means don’t

preserve_step = tf.reshape(model_input.preserve_state[:, time_step],

[config.batch_size,1])

for i in range(steps_in_cascade):

with tf.variable_scope("RNN"+str(i)):

# Run the lstm cell using the current timestep of

# input and the previous state to get the output and the new state

curr_lstm_cell = lstm_stack[i]

curr_state = self.state_stack[i]

# state.c and state.h are both shape (batch_size, hidden_size)

# when I multiply by (batch_size, 1) it broadcasts

curr_stateTuple = type(curr_state)

possible_state = curr_stateTuple(c = curr_state.c*preserve_step,

h = curr_state.h*preserve_step)

# Need a special base case for the first lstm input

if i == 0:

cell_input = self.lstm_input[:, time_step, :]

else:

# All of these variables will be defined because of our base case

cell_input = tf.concat(concat_dim = 1, values =

[self.lstm_input[:, time_step, :], cell_output])

(cell_output, curr_state) = curr_lstm_cell(cell_input,

possible_state)

# Update our state list

self.state_stack[i] = curr_state

# Update the output for the single cell

time_step_output.append(cell_output)

# For every timestep, we need a valid y output that should be of N*L*(L+1)/2

concated_time_steps = tf.concat(concat_dim = 1 , values = time_step_output)

outputs.append(concated_time_steps)

# we need to bookmark the final state to preserve continuity

# across batches when we run an epoch (see below)

self.final_state = self.state_stack

# concatenate all the outputs together into a big rank-2

# matrix where each row is of dimension hidden_size

lstm_output_rank2 = tf.reshape(tf.concat(1, outputs), [-1, final_high_dimension])
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if external_targets is None:

# reshape original targets down to rank-2 tensor

targets_rank2 = tf.reshape(model_input.y, [batch_size*num_steps, 3])

else:

targets_rank2 = tf.reshape(external_targets, [-1, 3])

with tf.variable_scope(’MDN’):

ourMDN = MDN(lstm_output_rank2, targets_rank2, final_high_dimension, is_train)

self.pis, self.corr, self.mu, self.sigma, self.eos = ourMDN.return_params()

# The loss is now calculated from our MDN

MDNloss, log_loss = ourMDN.compute_loss()

self.log_loss = log_loss

if external_targets is None:

log_loss = tf.reshape(log_loss, [batch_size, num_steps,1])

loss = log_loss * model_input.err_weight

self.loss_by_err_wt = loss

# What we now care about is the mixture probabilities from our MDN

else:

loss = MDNloss

with tf.variable_scope(’MDN’):

self.mixture_prob = ourMDN.return_mixture_prob()

self.ncomponents = ourMDN.NCOMPONENTS

# loss is calculated in our MDN

self.loss = tf.reduce_sum(loss)

self.loss_before_max = self.loss

self.err_wt_reduce_sum = tf.reduce_sum(model_input.err_weight)

self.loss /= tf.maximum(tf.reduce_sum(model_input.err_weight),1)

self.after_max_division = self.loss

# generate a train_op if we need to

if is_train:

self.train_op = tf.train.RMSPropOptimizer(learning_rate).minimize(self.loss)

else:

self.train_op = None

def run_epoch(self, session, return_predictions=False, query=False):

# we always fetch loss because we will return it, we also

# always fetch the final state because we need to pass it

# along to the next batch in the loop below.

# final state is now a list!! Update!! of three state tensors

fetches = {

’loss’: self.loss,

’final_state’: self.final_state,

’log loss’ : self.log_loss,

’loss before max’: self.loss_before_max,

’err wt reduce sum’: self.err_wt_reduce_sum,

’after tf.max div’: self.after_max_division,

}
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# we need to run the training op if we are doing training

if self.train_op is not None:

fetches[’train_op’] = self.train_op

# we need to fetch the network outputs if we are doing predictions

if return_predictions:

fetches[’p’] = self.mixture_prob

# run the initial state to feed the LSTM - this should just be

# zeros

state = session.run(self.initial_state)

# we will sum up the total loss

total_loss = 0.0

all_outputs = []

##################################################

# for each batch:

for step in range(self.model_input.epoch_size):

for level in range(len(state)):

# the input producer will take care of feeding in x/y,

# but we need to feed in the LSTM state

c, h = self.initial_state[level]

feed_dict = { c: state[level].c, h: state[level].h }

# run the computation graph?

vals = session.run(fetches, feed_dict)

# get the final LSTM state for the next iteration

state = vals[’final_state’]

# stash output if necessary

if return_predictions:

all_outputs.append(vals[’p’])

# update total loss

total_loss += vals[’loss’]

# do average

total_loss /= self.loss_scale

# return one or two things

if not return_predictions:

return total_loss

elif query:

return total_loss, vals[’p’]

else:

return total_loss, np.vstack(all_outputs)

def query(self, input_data, y, curr_state_list):

return self.mixture_prob



Appendix D. Code 42

def sample(self, session, duration=600):

def sample_gaussian_2d(mu1, mu2, s1, s2, rho):

mean = [mu1, mu2]

cov = [[s1*s1, rho*s1*s2], [rho*s1*s2, s2*s2]]

x = np.random.multivariate_normal(mean, cov, 1)

return x[0][0], x[0][1]

CHEAT = False

if CHEAT:

prev_x = np.zeros((4,1,3), dtype = np.float32)

prev_x[0,0,2] = 1

prev_x[:,0,0] = 2.5

prev_x[:,0,1] = 5.5

writing = np.zeros((duration,3), dtype = np.float32)

prev_state = session.run(self.initial_state)

fetches = [self.pis, self.corr, self.mu, self.sigma, self.eos, self.final_state]

for i in range(duration):

if i < 4:

x_in = prev_x[i].reshape(-1,1,3)

else:

x_in = sample.reshape(-1,1,3)

for level in range(len(prev_state)):

c, h = self.initial_state[level]

feed_dict = {self.lstm_input : x_in, c: prev_state[level].c,

h: prev_state[level].h }

pis, corr, mu, sigma, eos, next_state = session.run(fetches, feed_dict)

sample = gmm_sample(mu.reshape(-1,3,2), sigma.reshape(-1,3,2), corr, pis, eos)

writing[i,:] = sample

prev_state = next_state

else:

# first stroke

prev_x = np.zeros((1,1,3), dtype=np.float32)

prev_x[0,0,2] = 1 # we want to see the beginning of a new stroke

# this will hold all the info

writing = np.zeros((duration,3), dtype=np.float32)

# this is a list of three states

prev_state = session.run(self.initial_state)

fetches = [self.pis, self.corr, self.mu, self.sigma, self.eos, self.final_state]

for i in range(duration):

print(’At sample iteration: {}’.format(i))

for level in range(len(prev_state)):

c, h = self.initial_state[level]

feed_dict = {self.lstm_input : prev_x, c: prev_state[level].c,
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h: prev_state[level].h }

pis, corr, mu, sigma, eos, next_state = session.run(fetches, feed_dict)

sample = gmm_sample(mu.reshape(-1,self.ncomponents,2),

sigma.reshape(-1,self.ncomponents,2),

corr, pis, eos)

writing[i, :] = sample

prev_x = sample.reshape(-1,1,3)

prev_state = next_state

return writing

######################################################################

# plot input vs predictions

def integrate(xyoffs, seq):

# split up into subsequences

n = xyoffs.shape[0]

start_indices = np.nonzero(seq[:,0] == 0)[0]

all_outputs = []

for i, start_idx in enumerate(start_indices):

if i + 1 < len(start_indices):

end_idx = start_indices[i+1]

else:

end_idx = n

xyslice = xyoffs[start_idx:end_idx]

all_outputs.append(np.cumsum(xyslice, axis=0))

return np.vstack(tuple(all_outputs))

def make_plot(epoch, loss, data, seq, pred):

titlestr = ’{} test set loss = {:.2f}’.format(epoch, loss)

print(titlestr)

y = seq[:,1] * 6

if do_diff:

data = integrate(data, seq)

pred = integrate(pred, seq)

plt.clf()

plt.plot(data[:,0], data[:,1]+y, ’b.’)

plt.plot(pred[:,0], pred[:,1]+y, ’r.’)

plt.axis(’equal’)

plt.title(titlestr)

plt.savefig(’test_data_pred_lstm_3.pdf’)
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def make_handwriting_plot(generated_data, generated_seq):

titlestr = ’Generated Handwriting’

if do_diff:

data = integrate(generated_data, generated_seq)

plt.clf()

plt.plot(data[:,0], data[:,1], ’r.’)

plt.axis(’equal’)

plt.title(titlestr)

plt.savefig(’GeneratedHW.pdf’)

def make_heat_plot(epoch, loss, query_data, seq, xrng, yrng, xg, pred, i):

p = pred.reshape(xg.shape)

titlestr = ’{} query set loss = {:.2f}’.format(epoch,loss)

y = seq[:,1] * 6

query_data = integrate(query_data, seq)

last_point = query_data[-1]

plt.clf()

ax = plt.gca()

xdata = xrng+last_point[0]

ydata = -(yrng+last_point[1])

plt.pcolormesh(xdata, ydata, p, cmap=’jet’)

plt.plot(query_data[:,0], -query_data[:,1], ’wo’, alpha = 0.90, markersize=3)

plt.axis(’equal’)

plt.axis([xdata.min(), xdata.max(), ydata.min(), ydata.max()])

ax.xaxis.set_visible(False)

ax.yaxis.set_visible(False)

plt.title(titlestr)

plt.savefig(’Gifs/LSTMHeatMap’ + str(i) + ’.pdf’, bbox_inches=’tight’, pad_inches = 0)

def make_heat_plot_no_integrate(epoch, loss, query_data, xrng, yrng, xg, pred, i):

p = pred.reshape(xg.shape)

titlestr = ’{} query set loss = {:.2f}’.format(epoch,loss)

last_point = query_data[-1]

plt.clf()

ax = plt.gca()

xdata = xrng+last_point[0]

ydata = -(yrng+last_point[1])

plt.pcolormesh(xdata, ydata, p, cmap=’jet’)

plt.plot(query_data[:,0], -query_data[:,1], ’wo’, alpha = 0.90, markersize=5)

plt.axis(’equal’)

plt.axis([xdata.min(), xdata.max(), ydata.min(), ydata.max()])

ax.xaxis.set_visible(False)

ax.yaxis.set_visible(False)

plt.title(titlestr)

plt.savefig(’NewGifs/LSTMHeatMap’ + str(i) + ’.pdf’, bbox_inches=’tight’)

######################################################################

# main function

def main():

# configs are just named tuples
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Config = namedtuple(’Config’, ’batch_size, num_steps, hidden_size, keep_prob’)

# generate training and test configurations

train_config = Config(batch_size=train_batch_size,

num_steps=train_num_steps,

hidden_size=hidden_size,

keep_prob=train_keep_prob)

test_config = Config(batch_size=1,

num_steps=1,

hidden_size=hidden_size,

keep_prob=1)

query_config = Config(batch_size= 1,

num_steps = 1,

hidden_size = hidden_size,

keep_prob = 1)

generate_config = Config(batch_size = 1,

num_steps = 1,

hidden_size = hidden_size,

keep_prob = 1)

# range to initialize all weights to

initializer = tf.random_uniform_initializer(-init_scale, init_scale)

# Import our handwriting data

data = DataLoader()

our_train_data = data.data[0:2000]

our_valid_data = data.valid_data[0:2000]

our_query_data = data.valid_data[225:227]

# generate our train data

train_data, train_seq = get_data(our_train_data)

# get our validation data

valid_data, valid_seq = get_data(our_valid_data)

# get the query data

query_data, query_seq = get_data(our_query_data)

query_data, query_seq = query_data[0:145, :], query_seq[0:145,:]

# Let’s get our mesh grid for visualization

int_query_data = integrate(query_data, query_seq)

# int_query_y = query_seq[:,1] * 6

# itq = -int_query_data[:,1] + int_query_y

last_point = int_query_data[-1]

xmin, xmax = (int_query_data[:,0]-last_point[0]).min()-10,

(int_query_data[:,0]-last_point[0]).max()+10

ymin, ymax = ((int_query_data[:,1]-last_point[1]).min()-10),

((int_query_data[:,1]-last_point[1]).max()+10)
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print(’xmin: {} xmax: {} \n ymin: {} ymax: {}’.format(xmin,xmax,ymin,ymax))

xrng = np.linspace(xmin, xmax, 200, True)

yrng = np.linspace(ymin, ymax, 200, True)

xg, yg = np.meshgrid(xrng, yrng)

xreshape, yreshape = xg.reshape(-1,1), yg.reshape(-1,1)

third_col = np.ones(xreshape.shape)

mesh_target = np.hstack([xreshape, yreshape, third_col])

mesh_target = mesh_target.reshape(-1, 1, 3).astype(’float32’)

# generate input producers and models -- again, not 100% sure why

# we do the name_scope here...

with tf.name_scope(’train’):

train_input = Input(train_data, train_seq, train_config)

with tf.variable_scope(’model’, reuse=None, initializer=initializer):

train_model = LSTMCascade(train_config, train_input, is_train=True)

with tf.name_scope(’valid’):

valid_input = Input(valid_data, valid_seq, train_config)

with tf.variable_scope(’model’, reuse=True, initializer=initializer):

valid_model = LSTMCascade(train_config, train_input, is_train=False)

with tf.name_scope(’query’):

query_input = Input(query_data, query_seq, query_config)

with tf.variable_scope(’model’, reuse=True, initializer=initializer):

query_model = LSTMCascade(query_config, query_input, is_train=False,

external_targets=mesh_target)

prev_x = np.zeros((2,1,3), dtype = np.float32)

generate_data, generate_seq = get_data(prev_x)

with tf.name_scope(’generate’):

generate_input = Input(generate_data, generate_seq, generate_config)

with tf.variable_scope(’model’, reuse=True, initializer=initializer):

generate_model = LSTMCascade(generate_config, generate_input, is_sample=True,

is_train=False)

if CREATE_GIFS:

query_models = []

for i in range(2,len(query_data)):

with tf.name_scope(’gif_query’+str(i)):

seg_query_data = query_data[0:i,:]

seg_query_seq = query_seq[0:i,:]

int_seg_query_data = integrate(seg_query_data, seg_query_seq)

last_point = int_seg_query_data[-1]

xmin, xmax = (int_seg_query_data[:,0]-last_point[0]).min()-10,

(int_seg_query_data[:,0]-last_point[0]).max()+10

ymin, ymax = ((int_seg_query_data[:,1]-last_point[1]).min()-10),

((int_seg_query_data[:,1]-last_point[1]).max()+10)
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xrng = np.linspace(xmin, xmax, 200, True)

yrng = np.linspace(ymin, ymax, 200, True)

xg, yg = np.meshgrid(xrng, yrng)

xreshape, yreshape = xg.reshape(-1,1), yg.reshape(-1,1)

third_col = np.ones(xreshape.shape)

mesh_target = np.hstack([xreshape, yreshape, third_col])

mesh_target = mesh_target.reshape(-1, 1, 3).astype(’float32’)

query_input = Input(seg_query_data, seg_query_seq, query_config)

with tf.variable_scope(’model’, reuse=True, initializer=initializer):

query_models.append(LSTMCascade(query_config, query_input,

is_train=False, external_targets=mesh_target))

# print out all trainable variables:

tvars = tf.trainable_variables()

print(’trainable variables:’)

print(’\n’.join([’  - ’ + tvar.name for tvar in tvars]))

# create a session

session = tf.Session()

# # let’s save our computation graph IF we don’t already have a parameter

saver = tf.train.Saver()

# need to explicitly start the queue runners so the index variable

# doesn’t hang

tf.train.start_queue_runners(session)

if len(sys.argv) > 1:

saver.restore(session, sys.argv[1])

print(’Did a restore. Here are all the variables:’)

tvars = tf.global_variables()

print(’\n’.join([’  - ’ + tvar.name for tvar in tvars]))

if CREATE_GIFS:

for idx, model in enumerate(query_models):

int_query_data = integrate(model.model_input.posdata, model.model_input.seqinfo)

last_point = int_query_data[-1]

xmin, xmax = (int_query_data[:,0]-last_point[0]).min()-10,

(int_query_data[:,0]-last_point[0]).max()+10

ymin, ymax = ((int_query_data[:,1]-last_point[1]).min()-10),

((int_query_data[:,1]-last_point[1]).max()+10)

xrng = np.linspace(xmin, xmax, 200, True)

yrng = np.linspace(ymin, ymax, 200, True)

l, pred = model.run_epoch(session,return_predictions=True, query=True)

make_heat_plot_no_integrate(’Model {}’.format(idx), l, int_query_data, xrng, yrng,
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xg, pred, idx)

if GENERATE_HANDWRITING:

strokes = generate_model.sample(session)

seq = np.ones(shape = (strokes.shape[0], 1))

seq[0,0] = 0

make_handwriting_plot(strokes, seq)

print(’Handwriting generated.’)

if CREATE_TENSORBOARD:

writer = tf.summary.FileWriter("tensorboard_output", session.graph)

writer.close()

else:

# initialize all the variables

session.run(tf.global_variables_initializer())

# for each epoch

for epoch in range(num_epochs):

# run the epoch & get training loss

l = train_model.run_epoch(session)

print(’training loss at epoch {}    is {}’.format(epoch, l))

if epoch % save_every == 0:

print(’Saving model..... ’)

if not os.path.isdir(’models’):

os.mkdir(’models’)

written_path = saver.save(session, ’models/rnn_demo’,

global_step=epoch)

print(’saved model to {}’.format(written_path))

# see if we should do a printed/graphical update

if epoch % update_every == 0:

print()

l = valid_model.run_epoch(session)

print(’validation loss at epoch {} is {:.2f}’.format(epoch, l))

l, pred = query_model.run_epoch(session, return_predictions=True, query=True)

written_path = saver.save(session, ’models/rnn_demo’, global_step=num_epochs)

print(’saved final model to {}’.format(written_path))

# do final update

l, pred = query_model.run_epoch(session, return_predictions=True, query=True)

make_heat_plot(’final’, l, query_data, xrng, yrng, xg, pred)

if __name__ == ’__main__’:

main()



Appendix D. Code 49

D.3 Data Loader Code

Data processing code used for this project predominantly comes from Otoro Design

company and GitHub user hardmaru who was gracious enough to make it available to

the public

import os

import numpy as np

import xml.etree.ElementTree as ET

import matplotlib.pyplot as plt

import pickle

class DataLoader():

def __init__(self, batch_size=50, seq_length=300, scale_factor = 10, limit = 500):

self.data_dir = "./Data"

self.batch_size = batch_size

self.seq_length = seq_length

self.scale_factor = scale_factor # divide data by this factor

self.limit = limit # removes large noisy gaps in the data

data_file = os.path.join(self.data_dir, "strokes_training_data.cpkl")

raw_data_dir = self.data_dir+"/lineStrokes"

if not (os.path.exists(data_file)) :

print("creating training data pkl file from raw source")

self.preprocess(raw_data_dir, data_file)

self.load_preprocessed(data_file)

self.reset_batch_pointer()

def preprocess(self, data_dir, data_file):

# create data file from raw xml files from iam handwriting source.

filelist = []

# Set the directory you want to start from

rootDir = data_dir

for dirName, subdirList, fileList in os.walk(rootDir):

for fname in fileList:

filelist.append(dirName+"/"+fname)

# function to read each individual xml file

def getStrokes(filename):

tree = ET.parse(filename)

root = tree.getroot()

result = []

x_offset = 1e20

y_offset = 1e20

y_height = 0

for i in range(1, 4):

x_offset = min(x_offset, float(root[0][i].attrib[’x’]))

y_offset = min(y_offset, float(root[0][i].attrib[’y’]))

y_height = max(y_height, float(root[0][i].attrib[’y’]))
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y_height -= y_offset

x_offset -= 100

y_offset -= 100

for stroke in root[1].findall(’Stroke’):

points = []

for point in stroke.findall(’Point’):

points.append([float(point.attrib[’x’])-x_offset,float(point.attrib[’y’])-y_offset])

result.append(points)

return result

# converts a list of arrays into a 2d numpy int16 array

def convert_stroke_to_array(stroke):

n_point = 0

for i in range(len(stroke)):

n_point += len(stroke[i])

stroke_data = np.zeros((n_point, 3), dtype=np.int16)

prev_x = 0

prev_y = 0

counter = 0

for j in range(len(stroke)):

for k in range(len(stroke[j])):

stroke_data[counter, 0] = int(stroke[j][k][0]) - prev_x

stroke_data[counter, 1] = int(stroke[j][k][1]) - prev_y

prev_x = int(stroke[j][k][0])

prev_y = int(stroke[j][k][1])

stroke_data[counter, 2] = 0

if (k == (len(stroke[j])-1)): # end of stroke

stroke_data[counter, 2] = 1

counter += 1

return stroke_data

# build stroke database of every xml file inside iam database

strokes = []

for i in range(len(filelist)):

if (filelist[i][-3:] == ’xml’):

print(’processing ’+filelist[i])

strokes.append(convert_stroke_to_array(getStrokes(filelist[i])))

f = open(data_file,"wb")

pickle.dump(strokes, f, protocol=2)

f.close()

def load_preprocessed(self, data_file):

f = open(data_file,"rb")

self.raw_data = pickle.load(f)

f.close()

# goes thru the list, and only keeps the text entries that have more than seq_length points

self.data = []

self.valid_data =[]
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counter = 0

# every 1 in 20 (5%) will be used for validation data

cur_data_counter = 0

for data in self.raw_data:

if len(data) > (self.seq_length+2):

# removes large gaps from the data

data = np.minimum(data, self.limit)

data = np.maximum(data, -self.limit)

data = np.array(data,dtype=np.float32)

data[:,0:2] /= self.scale_factor

cur_data_counter = cur_data_counter + 1

if cur_data_counter % 20 == 0:

self.valid_data.append(data)

else:

self.data.append(data)

def validation_data(self):

# returns validation data

x_batch = []

y_batch = []

for i in range(self.batch_size):

data = self.valid_data[i%len(self.valid_data)]

idx = 0

x_batch.append(np.copy(data[idx:idx+self.seq_length]))

y_batch.append(np.copy(data[idx+1:idx+self.seq_length+1]))

return x_batch, y_batch

D.4 GMM Sampling Code

GMM sampling was kindly written by our advisor Matt Zucker

import numpy as np

import matplotlib.pyplot as plt

# arrays have shapes

# mu is n-by-k-by-2

# sigma is n-by-k-by-2

# rho is n-by-k

# pi is n-by-k

def gmm_sample(mu, sigma, rho, pi, eos):

##################################################

# verify shapes

n, k = rho.shape

assert mu.shape == (n, k, 2)

assert sigma.shape == (n, k, 2)

assert pi.shape == (n, k)

assert eos.shape == (n,)

##################################################
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# choose a mixture component

c = np.cumsum(pi, axis=1)

r = np.random.random((n,1))

# first index where r less than or equal to c

mixture_comp = (r <= c).argmax(axis=1)

##################################################

# get that component of mu, sigma, rho for each item

idx = np.arange(n)

mu = mu[idx, mixture_comp]

sigma = sigma[idx, mixture_comp]

rho = rho[idx, mixture_comp].reshape((-1, 1))

##################################################

# do sampling

s1 = sigma[:, 0].reshape((-1, 1))

s2 = sigma[:, 1].reshape((-1, 1))

a = s1

b = rho*s2

c = s2*np.sqrt(1.0 - rho**2)

rx = np.random.normal(size=(n, 1))

ry = np.random.normal(size=(n, 1))

rx_prime = a * rx

ry_prime = b * rx + c * ry

r = np.hstack((rx_prime, ry_prime)) + mu

eos_samples = (np.random.random((n,1)) <= eos).astype(np.float32)

return np.hstack((r, eos_samples))

# arrays have shapes

# mu is k-by-2

# sigma is k-by-2

# rho is (k,)

# pi is (k,)

# eos is a scalar

# x is n-by-3 (x, y, eos)

def gmm_eval(mu, sigma, rho, pi, eos, x):

##################################################

# verify shapes

k = rho.shape[0]

n = x.shape[0]

assert mu.shape == (k, 2)

assert sigma.shape == (k, 2)

assert pi.shape == (k,)

assert x.shape == (n, 3)
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assert np.isscalar(eos)

##################################################

# do stuff from Graves paper to evaluate probs.

dev = x[:, None, :2] - mu[None, :, :]

var = sigma**2

s1s2 = sigma.prod(axis=1)

z12_before = dev**2 / var

z12 = z12_before.sum(axis=2)

reduce_dev = dev.prod(axis=2)

z3 = (reduce_dev*rho*2) / (s1s2)

Z = z12 - z3

normalizer = (2.0 * np.pi * s1s2) * np.sqrt(1.0-rho**2)

expon_part = np.exp(-Z / (2.0 * (1.0 - rho**2)))

N = expon_part / normalizer

p = (N * pi).sum(axis=1)

x3 = x[:,2]

p_eos = eos * x3 + (1.0-eos) * (1.0-x3)

return p * p_eos

# ######################################################################
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