
John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

Ruby	on	Rails:	An	Introduction	
	
Course	Highlights:	

• 	
	
WEEK	1	–	Welcome	and	Setting	up	the	Development	Environment	
1.1 Course	Introduction	

• Great	for	rapid	development	
• Able	to	rapidly	prototype	
• Twitter	uses	RoR	
• Course	1	

o Basic	flow	of	how	information	comes	in	
o Functional	application	

• Course	2:		
o How	you	interact	with	DB	

• Course	3:		
o Really	dives	in	on	this	and	how	you	interact	well	with	MongoDB	and	RoR	
o Implementation	of	NoSQL	DB	

• Course	4:		
o RESTApi	is	used	commonly	(FB,	Twitter)	
o Full	stack	web	developer	–	service	side	could	be	great,	but	we	still	need	to	care	

about	the	client	facing	side,	i.e.	frontend		
o User	interaction	needs	to	be	perfect	
o HTML,	CSS,	JavaScript	–	design	and	turn	it	into	real	website	

• Course	5:	
o AngularJS	addresses	a	ton	of	the	issues	with	front	end	web	dev	
o Helps	to	make	things	faster	
o You’ll	be	able	to	build	a	full	website	where	majority	of	lift	is	on	client	side	

• Capstone:	which	I’m	not	going	to	do	really	
	
Module	1:	Setting	up	the	Dev	Env	

• 3	topics	
o Software	installation	

§ Installation	of	Ruby	and	RoR	
o Coding	editors	

§ Probably	sublime	
o Git	

§ Duh	VCS	
§ Going	to	deploy	to	the	cloud		
§ Going	to	be	helpful	when	deploying	an	application	

	
Remote	Repos	and	Github	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

• Linke	remote	repo	with	your	local	repo	
o Git	remote	add	alias	remote_url	

• origin	–	default	alias	for	a	cloned	repo	
• Most	of	this	is	default	git	

	
WEEK	2	–	Introduction	to	Ruby	
2.0	Getting	to	Know	Ruby	
2.0.a	Ruby	Basics	

• History	
o Invented	by	Yukihiro	Matsumoto	
o Popularized	by	Ruby	on	Rails	framework	

• Dynamic,	OO,	Elegant,	expressive,	and	declarative	
• Designed	to	make	programmers	happy		
• So	like	this	is	going	to	be	iterating	over	something	three	times:	

o 3.times	
• Ruby	basics	

o #	to	comment	
o 2	space	indentation	for	each	nested	level	
o Everything	is	evaluated	

• Printing	to	console	
o puts	

§ print	string	to	console;	as	in	put	string	
o p	

§ Prints	out	internal	representation	of	object	–	great	for	debugging.		
• Variables	

o snake_case	
• Constants	

o ALL_CAPS	or	FirstCap	
• Classes	(and	Modules)	

o CamelCase	
• Semicolons	

o Don’t	need	them.	Don’t	include	them.	
• Extremely	expressive	

	
2.0.b.	Flow	of	Control	

• if	/	elsif/	else	
o No	parentheses	or	curly	races	
o Use	end	to	close	flow	control	block	
o 	

• case	
• until	/	unless?	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o unless	–	basically,	if	something	is	not	equal	to	something	else	
§ essentially	like	a	not	equal	to	

o until	–	opposite	of	while;	executes	until	a	condition	is	met	
• while	/	for	
• Triple	equals	
• Flow	of	control:	modifier	form	(meaning	a	ton	of	stuff	on	one	line)	
• Only	things	that	are	false	are:		

o nil	object	
o false	object	

• Triple	equals	
o Use	double	equal	most	of	the	time	
o Equal	in	its	own	way	
o Special	kind	of	equals	
o You	can	use	this	with	regex		

• Case	expressions	
o Similar	to	a	series	of	if	statements	

§ age	=	21	
o case	
o 		when	age	>=	21	
o 				puts	…	
o 		when	1	==	0		
o 				puts	…		
o Specify	a	target	next	to	case	and	each	when	clause	is	compared	to	target	

§ So	like		
§ Name	=	‘Fisher’	
§ case	name	
§ 		when	#	comparison	to	name	
§ 		when	#	comparison	to	name	

o No	fall	through	logic	
o The	only	case	that	actually	matches	gets	executed	

• For	loop	
o for	i	in	0..2	
o 		puts	i	
o end	
o but	most	commonly,	each	/	times	preferred		

	
2.0.c.	Functions	

• Functions/methods	
o Function	is	defined	outside	of	a	class	
o Method	is	defined	inside	a	class	
o However,	in	Ruby	they	are	all	methods	

• Methods	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o Parentheses	are	option	when	defining	and	calling	a	method	
o Used	for	clarity	

• No	need	to	declare	type	of	parameters	
• Return	keyword	is	optional	–	last	executed	line	is	returned	
• Expressive	method	names	

o Method	names	can	end	with:	
§ ?	–	predicate	methods	(normally	return	boolean	values)	
§ !	–	dangerous	side	effects		

o Also	note:	number.zero	is	a	method	
• Default	arguments		

o Pretty	simple	
o def	factorial_with_default(n=5)	

§ n	==	0	?	1	:	n	*	factorial_with_default(n-1)	
o end	

• Splat	
o *	prefixes	parameter	inside		
o Can	apply	to	middle	parameter	or	any	one	

	
2.0.d	Blocks	

• Basically,	chunks	of	code	that	get	executed	
• Enclosed	between	either	curly	braces	{}	or	the	do	and	end	blocks	
• Passed	in	as	the	last	argument	
• Convention	

o Use	{}	when	block	content	is	single	line		
o Do	and	end	when	block	content	spans	multiple	lines		
o Often	used	as	iterators	

• Examples	
o 1.times	{	puts	“Hello	World!”}	
o 2.times	do	|index|	
o 		if	index	>	0	
o 				puts	index	
o 		end	
o end		

• Coding	with	blocks	
o Implicit:	

§ Use	block_given?	to	see	if	block	was	passed	in		
§ Use	yield	to	“call”	the	block	
§ Ex:	

• def	two_times_implicit	
• 		return	“No	block”	unless	block_given?	
• 		yield	
• 		yield	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

• end	
o Explicit:	

§ Use	&	in	front	of	the	last	parameter	
§ Use	call	method	to	call	block	
§ Ex:	

• def	two_times_explicit	(&i_am_a_block)	
• 		return	“No	block”	if	i_am_a_block.nil?	
• 		i_am_a_block.call	
• 		i_am_a_block.call	
• end	

§ Explicit	is	a	little	more	direct	
• Summary	

o Just	code	that	you	can	pass	into	methods	
o Can	either	use	blocks	implicitly	or	explicitly		

	
2.0.e	Files	

• Reading	from	File	
o File.foreach(‘test.txt’)	do	|line|	
o 		puts	line	
o 		p	line	
o 		p	line.chomp	#	chomps	off	newline	character	at	the	end	of	the	line	
o 		p	line.split	#	array	of	words	in	line	

• Reading	from	Non	existing	file	
o You	would	get	an	error	pretty	much	immediately		
o Stops	execution	

• Handling	Exceptions	
o Begin	
o 		File.foreach(‘do	not	exist.txt’)	do	|line|	
o 				puts	line.chomp	
o 		end		
o rescue	Exception	=>	e	
o 		puts	e.message	
o 		puts	“Let’s	pretend	this	didn’t	happen	
o end	

• Alternative	to	Exceptions	
o if	File.exist?	‘test.txt’	
o 		File.foreach(‘test.txt’)	do	|line|	
o 				puts	line.chomp	
o 		end	
o end	
o This	is	good	for	very	simple	cases	

• Writing	to	a	File	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o File.open(“test1.txt”,	“w”)	do	|file|	
o 		file.puts	“One	line”	
o 		file.puts	“Another”	
o end	

• Environment	variables	
o puts	ENV[“EDITOR”]		

• Summary	
o Files	automatically	closed	at	the	end	of	the	block	
o Either	use	exception	handling	or	check	for	existence	of	the	file	before	accessing	

	
2.1	Collections	and	String	APIs	
2.1.a	Strings	

• Strings	
o Single-quote	literal	strings	are	very	literal		
o Allow	escaping	of	‘	with	\	
o Show	almost	everything	as	is	
o Double	quoted	strings	interpret	special	characters	like	\n	and	\t		
o Allow	string	interpolation	

• Strings	/	Interpolation	
o single_quoted	=	‘ice_cream	\n	followed	by	it\’s	a	party!’	
o double_quoted	=	“ice_cream	\n	followed	by	it\’s	a	party!”	

§ this	will	show	the	newline	
• Interpolation	is	only	avaialable	for	double-quoted	strings	

o def	multiply	(one,	two)	
o 		“#{one}	multiplied	by	#{two}	equals	#{one	*	two}”	
o end	
o This	converts	the	entire	thing	to	a	string	and	also	does	the	computation		

• More	strings	
o String	methods	ending	with	!	modify	the	existing	string	

§ Most	others	just	return	a	new	string	
o Can	also	use	%Q{long	multiline	string}	

§ Same	behavior	as	a	double-quoted	string	
• Example	

o My_name	=	“	tim”	
o Puts	my_name.lstrip.capitalize	#	=>	Tim	
o P	my_name	#	=>	“	tim”	
o My_name.lstrip!	#	destructive!	Removed	the	leading	space		
o My_name[0]	=	‘K’	
o Puts	my_name	#	=>	Kim	
o Cur_weather	=	%Q{it’s	a	hot	day	outside	

grab	your	umbrellas…}	
o Cur_weather.lines	do	|line|	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o 		line.sub!	‘hot’,	‘rainy’	#	substitute	‘hot’	with	‘rainy	
• Strings	API	

o include?	other	string	
• Symbols	

o :foo	–	highly	optimized	string	
o Constant	names	that	you	don’t	have	to	pre-declare	
o “Stands	for	something”	string	type	

• Symbols	(cont)	
o Guaranteed	to	be	unique	and	immutable	
o Can	be	converted	to	a	String	with	to_s	
o Can	convert	from	String	to	Symboll	with	to_sym	

• Symbol	can	be	representation	of	a	method	name	
• Symbols	and	Strings	are	similar…	you	must	determine	which	makes	more	sense	to	use	
• Summary	

o Interpolation	lets	you	finish	your	thougth		
o Strings	have	a	lot	of	really	useful	API	

	
2.1.b	Arrays	

• Arrays	
o Collection	of	object	references	(auto-expandable	–	no	fixed	size)	
o Indexed	using	[]	
o Can	be	indexed	with	neg	numbers	or	ranges	
o Heterogeneous	types	allowed	
o Can	use	%w{str1	str2}	for	string	array	creation	

• Examples	
o arr_words	=	%w{	what	a	great	day	today!	}	
o puts	arr_words[-2]	#	day	
o puts	“#{arr_words.first}	-	#{arr_words.last}”	#	what	–	today!	
o p	arr_words[-3,	2]	#	[“great”,	“day”]	(go	back	3	and	take	2)	
o p	arr_words[2..4]	
o can	also	do	join	

• Modifying	Arrays	
o Append:	push	or	<<	
o Remove	pop	or	shift	
o Randomly	pull	elements	out	with	sample	
o Sort	of	reverse	with	sort!	and	reverse!	

§ sort	without	exclamation	returns	a	new	copy	of	the	array	
• Examples	

o #	You	want	a	stack?		
o stack	=	[];	stack	<<	“one”;	stash.push	(“two”)	
o puts	stack.pop	#	two	
o #	you	want	a	queue?		

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o Queue	=	[];	queue.push	“one”;	queue.push	“two”	
o Puts	queue.shift	#	one	
o If	you	specify	and	insert	into	an	index	that	is	beyond	the	range,	it’s	going	to	

create	nils	for	everything	else	
• Other	Array	Methods	

o each	–	loop	through	array	
§ takes	a	block	

o select	–	filter	array	by	selecting	
§ takes	a	block	

o reject	–	filter	array	by	rejecting	
§ pretty	much	the	opposite	of	the	one	above	

o map	–	modify	each	element	in	the	array	
§ maps	every	element	to	a	new	element	based	on	the	block	passed	in	

• Important	api:	http://ruby-doc.org/core-2.2.0/Array.html	
• Example	

o a	=	[1,	3,	4,	7,	8,	10]	
o new_arr	=	a.select	{	|num|	num	<	10}	

																					.reject	{	|num|	num.even?}	
o p	new_arr	#	[1,3,7]	

• Summary	
o Arrays	API	is	very	flexible	and	powerful		
o Lots	of	ways	to	process	elements	

	
2.1.c	Ranges	

• Used	to	express	natural	consecutive	sequences	
• 1..20,	‘a’..’z’	
• Two	main	rules	

o Two	dots	à	all-inclusive		
§ 1..10	(1	is	included,	10	is	included)	

o Three	dots	à	end-exclusive	
§ 1…10	(1	is	included,	10	IS	EXCLUDED)	

o The	more	dots	you	have,	the	less	you	have	at	the	end	
• Ranges	

o Very	efficient		
o Only	start	and	end	stored	
o Can	be	converted	to	an	array	with	to_a	
o Used	for	conditions	and	intervals	

• Examples	
o puts	(1…10)	===	5.3	#	true	
o puts	(‘a’…’r’)	===	“r”	#	false,	end	–exclusive	

• Summary	
o Useful	for	consec	sequences		

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o Convert	a	range	to	an	array	for	more	functionality	
	
2.1.d	Hashes	

• Hashes	
o Indexed	collection	of	object	references	
o Created	with	either	{}	or	Hash.new	
o Also	known	as	associative	arrays		
o Index(key)	can	be	anything		

§ Not	just	an	int	as	is	the	case	with	arrays		
o Accessed	using	[]	
o Values	set	using		

§ =>	(creation)	
§ []	(post	creation)	

• Example	
o editor_props	=	{	“font”	=>	“Arial”,	“size”	=>	12,	“color”	=>	“red}	
o editor_props.length	

• Hashes	
o Accessing	a	value	in	the	Hash	for	which	an	entry	does	not	exist		
o nil	is	returned	
o BUT	if	you	create	a	Hash	with	Hash.new(0),	then	0	is	going	to	be	returned	

instead.		
• Example	

o word_freq	=	Hash.new(0)	
o sentence	=	“Chicka	chicka	boom	boom”	
o sentence.split.each	do	|word|		
o 		word_frequency[word.downcase]	+=	1	
o end	

• More	hahse	
o The	order	of	putting	things	into	Hash	maintained		
o If	using	symbols	as	keys,	can	use	symbol:	syntax		
o If	a	Hash	is	the	last	argument	to	a	method,	you	can	drop	the	curlies		

• Block	and	Hash	Confusion	
o a_hash	=	{:one	=>	“one”}	
o puts	a_hash	
o #	can’t	do	puts	{	:one	=>	“one”}	
o #	ruby	gets	confused	and	think	it’s	a	block	
o To	get	around	this	you	can	use	parenthesis	
o Or	you	can	just	drop	the	blocks	all	together	

	
2.2	Object	Orientated	Programming	in	Ruby	
2.2.a	Classes	

• OO	Review	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o Identify	things	your	program	is	edaling	with		
o Classes	are	things	(blueprints)	

§ Containers	of	methods	
o Objects	are	instances	of	those	things	
o Objects	contain	instance	variables	(state)	

• Instance	variables		
o Begin	with	@	
o Not	declared		

§ Spring	into	existence	when	first	used	
o Available	to	all	instance	methods	of	the	class	

• Object	creation	
o Classes	are	factories		

§ Calling	new	method	creates	an	instance	of	class	
§ new	causes	initialize	

• Example	
o class	Person	
o 		def	initialize	(name,	age)	#	constructor	
o 				@name=name	
o 				@age	=	age	
o 		end	
o 		def	get_info	
o 				@additional_info	=	“Interesting”	
o 				“Name:	#{@name},	age:	#{@age}”	
o 		end	
o end		

• Accessing	Data	
o Instance	variables	are	private	

§ Cannot	be	accessed	from	outside	th4e	class		
o Methods	have	public	access	by	default		
o To	access	instance	variables,	need	to	define	getters/setter	

• Example	
o def	name	
o 		@name	
o end	
o def	name=	(new_name)	
o 		@name	=	new_name	
o end	

• Easier	syntax	for	accessing	data	
o attr_accessor	–	getter	and	setter	
o attr_reader	–	getter	only	
o attr_writer	–	setter	only	

• Example	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o class	Person	
o 		attr_accessor	:name,	:age	
o end	

• Sometimes	we	want	to	use	a	more	intelligent	constructor		
• Self		

o Inside	instance	method,	self	refers	to	the	object	itself	
o Usually	using	self	for	calling	other	methods	of	the	same	instance	is	extraneous	
o Sometimes	using	self	is	required	
o Outside	instance	method	def,	self	refers	to	the	class	itself	

• Summary	
o Objects	are	created	with	new	
o Use	the	short	form	for	setting/getting	data		
o Don’t	forget	self	when	required	

	
2.2.b	Class	Inheritance	

• ||	operator	evaluates	the	left	side;	if	true,	returns	it,	else	it	returns	the	right	side	
• @x	=	@x	||	5	will	retrun	5	the	first	time	and	@x	the	next	time		
• short	form	

o @x	||=5	
• This	is	really	helpful	for	setting	an	instance	variable	to	something	the	first	time	
• Class	Methods	

o Invoked	ON	the	class	(as	opposed	to	an	instance	of	the	class)	
o Self	OUTSIDE	of	the	method	definition	refers	to	the	Class	object	
o Three	ways	to	define	class	methods	

§ Class	variables	begin	with	@@	
• Example	

o class	MathFunctions	
o 		def	self.double(var)	
o 				times_called;	var	*	2	
o 		end	
o 		class	<<	self	
o 				def	times_called	
o 						@@times_called	||=0;	@@times_called	+=	1	
o 				end	
o 		end	
o end	
o def	MathFunctions.triple(var)	
o 		times_called;	var	*	3	
o end	

• Class	Inheritance	
o Every	class	implicitly	inherits	from	Object	
o Object	inherits	from	BasicObject	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o No	multiple	inheritance	
§ Mixins	are	used	instead	

o Class	SmallDog	<	Dog	
o 		Def	bark	
o 				“barks	quietly”	
o 		end	
o end	

	
2.2.c	Modules		

• Module	
o Container	for	classes,	methods,	and	constants	(or	other	modules)	
o Like	a	Class	but	cannot	be	instantiated	

• Module	as	Namespace	
o module	Sports	

§ class	Match	
• attr_accessor	:score	

§ end	
o end	
o module	Patterns	

§ class	Match	
• attr_accessor	:complete	

§ end	
o end	
o match1	=	Sports::Match.new	
o match2	=	Patterns::Match.new	

• Module	as	Mixin	
o Interfaces	in	OO	
o Contract	defines	what	a	class	could	do	
o Mixins	provide	a	way	to	share	ready	code	among	multiple	classes	

• Example	
o module	SayMyName	

§ attr_accessor	:name	
§ def	print_name	

• puts	“Name:	#{@name}”	
§ end	

o end	
o class	Person	

§ include	SayMyName	
o end	
o person	=	Person.new	
o person.name	=	“Joe”	
o person.print_name	=	#	Name:joe	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

• Enumerable	Module	
o map,	select,	reject,	detect,	etc	
o Used	by	Array	class	and	many	others	
o Provide	an	implementation	for	each	method		
o And	then	you	can	include	it	in	your	own	class	

• Example	
o class	Player	

§ attr_reader	:name,	:age,	:skill_level	
§ def	initialize	(name,	age,	skill_level)	

• @name	=	name	
• @age	=	age	
• @skill_level	

§ end	
§ def	to_s	

• “<#{name}:	#{skill_level}(SL),	#{age}(AGE)>”	
§ end	

o end	
• Enumerable	in	Action	

o require_relative	‘player’	
o require_relative	‘team’	

• Modules	allow	you	to	mixin	useful	code	into	other	classes	
• Require	relative	is	useful	for	including	other	ruby	files	relative	to	the	current	ruby	code	

	
2.2.d	Scope	

• Methods	and	classes	begin	new	scope	for	variables	
• Example	

o v1	=	“outside”	
o class	MyClass	
o 		def	my_method	
o 				p	v1	#	exception	thrown	
o 				p	local_variables	#	prints	out	a	list	of	all	the	local_variables	
o end	

• Scope	constants	
o Pretty	intuitive		

• Scope	block	
o Blocks	inherit	outer	scope	
o Block	is	a	closure		

§ Remembers	the	context	in	which	it	was	defined	and	then	uses	that	
context	whenever	

• Block	–	local	scope		
o A	variable	created	inside	the	block	is	only	available	to	the	block	
o Params	to	the	block	are	always	local	to	the	block	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

	
2.2.e	Access	Control		

• Three	levels	of	access	control	
• Controlling	access	
• How	private	is	private	access?	
• Access	control	

o When	designing,	how	much	do	you	want	to	expose?	
o Encapsulation:	try	to	hide	the	internal	representation	of	the	object	so	you	can	

change	it	later	
o Three	levels	

§ Public	
§ Protected	
§ Private	

• Specifying	access	control	
o Two	ways	

§ Specify	public	projected	or	private	
• Everything	until	the	next	access	control	keyword	will	be	of	that	

level	
§ Define	the	methods	regularly	and	then	specify	public,	private,	protected	

access	level	and	list	the	comma	separated	methods	under	those	levels	
using	method	symbols	

o Example	
§ class	MyAlgorithm	
§ 		private	
§ 				def	test1	
§ 						“Private”	
§ 				end	
§ 		protected	
§ 				def	test2	
§ 						“Protected	
§ 				end	
§ end	

o Example	2	
§ class	Another	
§ 		def	test1	
§ 				“Private,	as	declared	later”	
§ 		end	
§ 		private	:test1	
§ end	

o Access	control	meaning	
§ Public	methods	–	no	access	control	is	enforced	
§ Protected	methods	–	can	be	invoked	by	the	objects	of	defining	class	or	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

subclasses	
§ Private	methods	–	cannot	be	invoked	with	an	explicit	receiver		

• Setting	an	attribute	can	be	invoked	with	explicit	receiver		
• Summary	

o Public	and	private	access	controls	are	used	the	most	
	
2.3	Unit	Testing	with	RSpec	
2.3.a	Introduction	to	Unit	Testing	

• Ensure	your	code	works	
• Serves	as	documentation	for	devs	
• Refactor	to	make	sure	you	didn’t	break	anything	
• Enter	Test::Unit	

o Ruby	takes	testing	very	seriously		
o Has	Test::Unit	shipped	with	it		
o Ruby	1.9	stripped	Test::Unit	to	a	minimum		
o Member	of	the	XUnit	family	(Junit,	CppUnit)		
o Basic	idea:	extend	Test::Unit::TestCase		
o Prefix	method	names	with	test_	
o If	one	of	the	methods	fails,	others	keep	going	(good	thing)	
o Can	use	setup()	and	teardown()	methods	for	setting	up	behavior	that	will	

execute	before	every	test	method	
• Example	

o class	Calculator	
§ attr_reader	:name	
§ def	initialize(name)	

• @name=name	
§ end	
§ def	add(one,two)	

• one	–	two	
§ end	

o Then	your	testing	would	look	like:	
§ require	‘test/unit’	
§ require_relative	‘calculator’	
§ class	CalculatorTest	<	Test::Unit::TestCase	

• def	setup	
o @calc	=	Calculator.new(‘test’)	

• end	
• def	test_addition	

o asset_equal	4,	@calc.add(2,2)	
• end	

o then	run	ruby	calculator_test.rb	
o Also	good	mneumoic	to	remember	is	EACH	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

§ Expected	first,	then	actual	
	
2.3.b	Introduction	to	RSpec	

• Testing	with	RSpec	
o Test::Unit	“does	the	job”	but	it	would	be	nice	if	tests	would	be	more	descriptive,	

more	English-like	
o The	writing	of	the	tests	is	more	intuitive	as	well	as	the	output	from	running	the	

tests	
• Installing	

o Easy…	gem	install	rspec	
• describe()	

o Set	of	related	tests	(a.k.a.	example	group)	
o Takes	either	a	String	or	Class	as	an	argument	
o All	specs	must	be	inside	a	describe	block	
o No	class	to	subclass		

• before()	and	after()	methods	
o before	and	after	methods	are	similar	to	setup	and	teardown	
o Can	pass	in	either	:each	or	:all	(infreq	used)	to	specifyc	whether	the	block	will	

run	before/after	each	test	or	once	before/after	all	tests	
o before	:all	could	be	useful	if	you	only	want	to	connect	to	DB	once	

• it()	
o Main	logic	happens	inside	the	it()	method	

• Example	
o require	‘rspec’	
o require_relative	‘../calculator’	
o describe	Calculator	do	

§ before	{	@calculator	=	Calculator.new(‘RSpec	calculator’)}	
§ it	“should	add	2	numbers	correctly”	do	

• expect(@calculator.add(2,2)).to	eq	4	
§ end	
§ it	“should	subtract	2	numbers	correctly”	do		

• expect(@calculator.subtract(4,2)).to	eq	2	
§ end	

o end	
• Summary	

o RSpec	makes	testing	more	intuitive		
	
2.3.c	RSpec	Matchers	

• Hands	to	and	not_to	methods	on	all	outcome	of	expectations	
• to()/not_to()	methods	take	one	parameter	–	a	matcher	

o be_true	/	be_false	
o eq	3	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o raise_error(SomeError)	
• be_predicate	–	boolean	

o If	the	object	on	which	the	test	is	operating	has	a	predicate	method,	you	auto	get	
the	be_predicate	matcher		

o Be_nil	is	a	valid	matcher	because	every	predicate	method	has	a	:nil?	Method	
	
WEEK	3	–	Introduction	to	Ruby	on	Rails	
3.0	Core	Concepts	
3.0.a	Welcome	to	Module	3:	Introduction	to	Ruby	on	Rails	

• Core	principles		
• Model	View	Controller	

o Principle	that	applies	to	a	lot	of	web	frameworks	as	well	
• Convention	Over	Configuration	

o Following	conventions	helps	applications	be	built	very	quickly	
	
3.0.b	Introduction	to	Rails	

• Framework	for	making	dynamic	web	applications	
• Dynamic	

o Content	that	is	gotten	from	a	database	or	something	like	that		
o Html	is	just	going	to	be	static	(i.e.	not	dynamic)	
o Created	by	David	Heinemeier	Hansson	

§ Also	a	racecar	driver	
• Who	is	Using	Rails?	

o Hulu	
o Twitter	
o Github	
o White	pages	

• Why	use	Rails?	
o Convention	Over	Configuration	(COC)	
o Less	code	to	write		
o Learn	it	once	and	then	know	what	to	expect	the	next	time	

• Why	Use	Rails?	
o Database	Abstraction	Layer	
o No	need	to	deal	with	low-level	DB	details	
o No	more	SQL	(Almost)	
o ORM	

§ Object	Relational	Mapping	
§ Abstracting	the	code	to	interact	with	DB	using	Ruby	
§ Mapping	your	database	to	your	Ruby	Classes	

• Why	else?	
o Agile-friendly	
o DRY	principle		

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o Cross-platform	
• SQLite	

o Rails	uses	SQLite	for	database	by	default	
o Self-contained,	serverless,	zero-configuration,	transactional,	relationsal	SQL	

database	engine	
o Claim:	Most	widely	deployed	SQL	database	engine	in	the	world	

• MVC:	Model	View	Controller	
o Well-established	software	pattern	used	by	many	web	and	desktop	frameworks	
o Separation	of	concerns	
o Model	–	represents	the	data	the	application	is	working	with	(and	poss	business	

logic)	
o View	–	representation	of	that	data	(visually)	
o Controller	–	interaction	between	model	and	view	

• MVC	Cycle	

o 	
• Summary	

o Rails	is	good	with	RAPID	PROTOTYPING	
o MVC	and	COC	enable	you	to	think	less	and	do	more	

	
3.0.c	Creating	your	First	Application	

• How	to	create	and	run	your	app	
• Directory	structure	(CoC)	
• Adding	static	pages	to	your	application	
• Creating	First	App	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o rails	new	appname	
o rails	new	–h	for	more	operations	
o run		

• Bundler	(gems	manager)	
o Cleans	up	the	house	and	resolves	dependency	issues	

• Version	Control	Your	Rails	App	
o Rails	automatically	generate	.gitignore	inside	repo	
o cd	my_first_app	
o git	init		
o git	add	.	
o git	commit	–m	“Initial	commit”	

• Running	the	App	
o Rails	alos	provides	a	built-in	web	server	
o rails	server	

• Running	the	App	(cont)	
o Good	at	holding	your	hand		
o 1	use	bin/rails	generate	to	create	your	models	and	controllers	
o 2	set	up	a	root	route	to	replace	the	default	place	
o 3	Configure	your	database	

• Directory	Structure	Convention	
o app/	directory	–	controllers,	views,	models,	helpers	(most	of	the	time)	
o config/	-	which	database	are	you	going	to	be	using	(and	username	and	password)	
o db/	-	files	related	to	your	db	and	migration	scripts	(how	to	change	from	one	

database	to	another)	
o public/	-	static	files.	Html	files.	All	that	boring	shit.	
o Gemfile	
o Gemfile.lock	–	dependencies	managed	by	Bundler	

• public/hello_static.html		
o Server	looks	into	public	directory	before	looking	anywhere	else		
o So…	if	we	want	to	add	a	completely	static	web	page	to	our	application	–	we	can	

add	it	under	public	directory	
	
3.0.d	Controller	and	View	

• How	to	generate	controller	
• Actions	
• Embedded	Ruby	(ERB)	
• Generating	a	Controller	

o Controllers	contain	actions	(Ruby	methods)	and	orchestrate	web	requests	
o Rails	can	quick	generate	a	controller	and	0	or	more	actions	with	associated	views	
o rails	generate	controller	controller_name	[action1	action2]	

• Generating	a	Controller	Example	
o rails	g	controller	greeter	hello	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

• ERB	(Embedded	Ruby)	
o Looks	like	html	but	has	an	.erb	extension	
o ERB	is	a	templating	library	(similar	to	jSP)	that	lets	you	embed	Ruby	into	your	

HTML	
o Two	tag	patterns	to	learn:	

§ <%	…ruby	code…	%>	-	evaluate	Ruby	code	
§ <%=	…ruby	code…	%>	-	output	evaluated	Ruby	code	

o Whole	point	is	to	mix	html	static	and	Ruby	code	
• New	hello.html.erb	

o <%	random_names	=	[“Alex”,	“Joe”]	%>	
o <h1>	Greetins,	<%=	random_names.sample	%></h1>	
o <p>The	time	now	is	<%=	Time.now	%></p>	

	
3.0.e	Routes	

• Routing		
• Rake	
• How	to	analyze	current	routes	
• Routes	

o Before	the	controller	can	orchestrate	where	the	web	request	goes,	the	request	
needs	to	get	routed	to	the	controller		

o The	route	for	hello	action	was	auto	generated	with	the	rails	g	controller	
• MVC(R)	Cycle	

o 	
• routes.rb	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o All	the	routes	need	to	be	specified	in	the	config/routes.rb	file		
o Let’s	add	the	route	for	the	goodbye	action	
o It’l	look	like		

§ Rails.application.routes.draw	do	
• get	‘greeter/hello’	=>	“greeter#hello”	

o This	syntax	is	saying	go	to	controller	/	action	
o So	you	can	map	different	things	to	the	name	if	you	do	this		
o ‘greeter/hello’	=>	‘greeter#whatsgood’	

• get	‘greeter/goodbye’	
• Rake	

o Ruby’s	make	
o No	XML	–	written	entirely	in	Ruby	
o Rails	uses	rake	to	automate	app-related	tasks	

§ Database,	running	tests,	etc	
o rake	–tasks	

• Individual	Rake	Task	
o Can	zero-in	on	an	individual	rake	task	and	what	it	does	with	–describe	flag	
o rake	–describe	task_name	
o rake	–describe	routes	

§ Print	out	all	defined	routes	in	match	order,	with	names.	Target	specific	
controller	with	CONTROLLER=x	

• Rake	Routes	
o rake	routes	

• Summary	
o Router	directs	the	request	to	the	right	controller		
o rake	routes	lets	you	see	which	routes	are	currently	defined		

	
3.1	Diving	Deeper	into	Rails	
3.1..a	Moving	Business	Logic	Out	of	View	

• Moving	business	logic	out	of	View	and	into	Controller	in	order	to	comply	with	MVC		
• Action	Methods	Inside	Controller		

o If	the	action	(method)	is	not	really	doinganything	(i.e.	empty),	we	can	remove	it		
o As	long	as	there	is	a	proper	route	defined	and	there	is	a	properly	named	view	

file/template,	the	action	method	does	not	have	to	be	there…	Rails	will	find	the	
correct	template	by	convention		

• Controller:	New	Look	
o class	GreeterController	<	ApplicationController	

§ #	def	hello	
§ #	end	
§ #	def	goodbye	
§ #	end	

o end		

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o This	will	still	work	totally	find	
o So	what’s	the	point	of	having	them	there?		
o Business	logic	does	not	belong	in	the	View	

• Moving	Business	Logic	Out	
o Instance	variables	from	the	controller	are	available	inside	the	view		
o class	GreeterController	<	ApplicationController	

§ def	hello	
• random_names	=	[“Alex”,	“Joe”,	“Michael”]	
• @name	=	random_names.sample	
• @time	=	Time.now	
• @times_displayed	||=0	
• @times_displayed	+=	1	

§ end	
o end	

• Instance	Variables	in	Rails	
o Unlike	some	frameworks,	you	cannot	“store”	values	in	the	controller’s	instance	

variables	in	between	requests	
o Alternatives?		

§ Session	(store	in	the	http	session)	
§ Database	(store	in	the	database)	

• Summary	
o Keep	business	logic	OUT	of	the	view	
o Instance	variabels	in	the	controller	are	available	to	view	
o Instance	variables	do	not	stick	around	between	requests	

	
3.1.b	Helpers	

• Helpers	and	using	link_to	
• Helpers	

o We’ve	made	the	current	time	available	through	@time	instance	variable	
o What	if	we	wanted	to	format	that	time?		

§ Should	it	go	into	view?	(then	non-reusable)	
§ Controller?	Should	be	“view”	agnostic	

• Helpers	
o greeter_helper.rb	module	generated	
o Let’s	add	a	helper	method		
o Example	

§ module	GreeterHelper	
• def	formatted_time(time)	

o time.strftime(“%I:%M%p”)	
• end	

§ end	
§ Available	to	ALL	views	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o Then	you	can	put	it	in	the	hello.html.erb	file		
• Rail’s	Built-In	Helpers:	link_to	

o link_to	name,	path	
§ Hyperlink	generator	that	displayed	the	name	and	linked	to	the	path	
§ Path	could	either	be	a	regular	string	or	a	route	defined	in	the	routes.rb	

ending	with	_url	or	_path	
o Instead	of	specifying	a	path,	you	specify	a	variable,	automatically	changes	your	

page	if	the	variable	changes	
o _url	and	_path	used	interchangeable,	but	according	to	the	spec	full	path	is	

required	in	cases	of	redirection	
• link_to	in	action	

o #in	hello.html.erb	
o <p><%=	link_to	“Google”,	“https://www.google.com”	%></p>	
o <p><%=	link_t	“Goodbye”,	greeter_goodbye_path	%></p>	
o greeter_goodbye	derived	from	routes.rb	(see	Prefix	column	in	rake	routes)	

• Summary	
o Helpers	are	“macros”	/	“formatters”	for	your	view	
o When	using	link_to	there	is	no	need	to	change	things	if	a	path	changes	

	
3.2	Building	a	Ruby	on	Rails	Application	
3.2.a	Introduction	to	HTTParty	

• Going	to	look	at	Ruby	gems	
• How	to	use	HTTParty	Ruby	gem	
• RubyGems	

o Just	a	package	manager	
• What	are	Restful	Web	Services?	

o Simple	web	services	implemented	using	HTTP	(and	principles	of	REST)	that:	
§ Have	a	base	URI	
§ Support	a	data	exchange	format	like	XML	or	JSON	
§ Support	a	set	of	HTTP	operations	(GET,	POST,	etc)	

o Flipping	web	on	it’s	head	
o Thinkg	about	web	as	more	of	an	MVC	pattern	

§ Really	just	stores	those	resources	and	you	can	get	it	in	multiple	different	
types	of	formats	

§ Html	isn’t	great	to	parse	but	xml	and	json	are	
• HTTParty	Gem	

o Restful	web	services	client	(think	your	browser)	
o Browser	is	just	your	client	from	a	web	server	
o Automatic	parsing	of	JSON	and	XML	into	Ruby	hashes	
o Provides	support	for		

§ Basic	http	authentication		
§ And	default	request	query	params	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

• Lots	of	Restful	APIs	Out	There	
o Every	self	respecting	web	service	normally	has	some	restful	api	that	it	provides	
o In	addition	to	the	html		
o Most	popular	APIs?	

§ Facebook	
§ Google	Maps	
§ Fitbit	
§ LinkedIn	
§ Bloomberg	
§ Twitter	
§ Instagram	

o The	html	is	just	one	of	the	formats	of	information	that’s	stored	on	websites	
• HTTParty	Usage	

o include	HTTParty	module	
o can	specify	

§ base_uri	for	your	requests	
§ default_params	(API	developer	key	for	example)	
§ format	to	tell	it	which	format	things	are	coming	in	

o Coursera	itself	has	a	Restful	API	
• Specify	a	q	request	parameter	
• First	param	is	specified	by	?	and	then	others	specified	by	&		
• HTTParty	Example	

o require	‘httparty’	
o require	‘pp’	#	pretty	print	
o class	Coursera	

§ include	HTTParty	
§ base_uri	‘https://api.coursera.org/api/catalog.v1/courses’	
§ default_params	fields:	‘smallIcon,shortDescription’	q:	‘search’	
§ format	:json	
§ def	self.for	term	

• get(“”,	query:	{query:	term})[“elements”]	
§ end	

o end	
o pp	Coursera.for	“python”	
o Get	back	a	giant	hash	which	has	elements	as	it’s	key	

	
3.2.b	Bundler	

• Provides	a	consistent	environment	for	Ruby	projects	by	tracking	and	installing	the	exact	
gems	and	versions	that	are	needed	

• Bundler	
o Lets	you	specify	gems	for	the	Rails	app	inside	Gemfile	
o Preffered	way	to	manage	gem	dependencies	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

o bundle	install	or	bundle	after	specifying	a	new	gem	in	the	Gemfile	
o You	can	instruct	rails	through	Gemfile	to	only	load	certain	gems	in	specific	Rails	

environment	
• Which	version	of	Gem?	

o gem	“thin”,	“~>1.1”		
o called	the	perssimistic	version	constraint		

§ drops	the	final	digit,	then	increments	to	get	the	upper	limit	version	
number	

o so	that	top	statement	would	be	equiv	to		
o gem	“thin”,	“>=1.1”,	“<	2.0”	

• Bundler	require	
o Occasionally,	the	name	of	the	gem	to	be	used	inside	require	statement	is	

different	than	the	name	of	the	gem	
o gem	‘sqlite3-ruby’,	require:	‘sqlite3’	

• Gemfile	–	Example	
o source	‘http://rubygems.org’	
o gem	‘rails’,	‘4.2.3’	
o gem	‘sqlite3’	
o Can	change	the	version	of	rains	just	through	bundle	update	
o Gemfile.lock	

§ This	file	contains	the	actual	gem	versions	
• Summary	

o Bundler	manages	gem	dependencies	
o Loads	gems	on	application	startup	

	
3.2.c	Rails	and	HTTParty	Integration	

• HTTParty	Integration	–	Gemfile	
o Specify	version	of	httparty	
o gem	‘httparty’,	‘0.13.5’	
o Then	shutdown	server	
o Run	bundle	
o Then	you	need	to	restart	the	server	

• Coursera	Model	
o Based	on	convention,	controllers	are	named	plural	and	model	is	singular		

• Courses	Controller		
o Fill	in	index	action	

• courses/index.html.erb	
o image_tag	creates	a	link	to	an	image		

	
3.2.d	CSS,	Parameters	&	Root	Path	

• Adding	basic	styling	to	our	view	
• Making	the	app	more	dynamic	with	a	request	parameter	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

• Routing	the	root	path	
• Layout	

o views/layout/application.html.erb	serves	as	view’s	container	(unless	
overridden)	

o Each	individual	page	gets	displayed	inside	the	body	of	this	page		
o You	do	need	to	specify	which	css	files	you	want	to	include	

• Terms	
o Zebrafiy	–	when	you	switch	between	backgrounds	

• Adding	Some	CSS	
o When	you	generate	a	controller,	you	get	the	controller	name	+	.scss	
o SCSS	–	it’s	all	sass		

§ Sass	super-set	of	normal	CSS		
§ You	could	use	regular	css	inside	sass	files	

o courses.scss	
§ table	{	

• border-collapse:	collapse;	
§ }	
§ td	{	

• padding:	12px;	
§ }	
§ .even	{	

• background-color:	#D6E55	
§ }	

o Then	you	need	to	modify	view	to	include	CSS	classes	
o index.html.erb	

§ <h1>	Searching	for	-	<%=	@search_term	%></h1>	
§ <table	border=”1”>	

• <tr>	
o <th>Image</th>	
o <th>Name</th>	

• </tr>	
• <%	@courses.each	do	|course|	%>	

o <tr	class=<%=	cycle(‘even’,	‘odd’)	%>>	
§ <td><%=	image_tag(course[“smallIcon”])%></td>	
§ <td><%=	course[“name”]	%></td>	
§ <td><%=	course[“shortDescription”]	%></td>	

o </tr>	
• <%	end>	

§ The	cycling	bit	literally	comes	through	even	and	odd	
• params	helper	

o it	would	be	nice	to	specify	the	search	term	
o Use	params	Hash	to	retrieve	the	value	(name	of	param	becomes	a	symbol/key	in	

John	Larkin	
12/28/17	

Coursera:	Ruby	on	Rails:	An	Introduction	
Class	Notes	

Hash	
o Returns	nil	if	request	param	is	not	passed	in	
o No	changes	to	the	model	or	the	view,	only	to	the	Controller	

• Example	
o class	CoursesController	<	ApplicationController	

§ def	index	
• @search_term	=	params[:looking_for]	||	‘jhu’	
• @courses	=	Coursera.for(@search_term)	

§ end	
o end	

• This	will	default	to	‘jhu’	if	nothing	is	passed	in	
• One	Final	Twist:	RootPath	

o What	if	we	want	to	specify	the	root	path?	
o We	can	specify	it	to	go	to	the	index	action	
o Just	modify	routes.rb	

§ Root	‘courses#index’	
§ This	means	courses	controller,	action	index	

• Summary	
o Minor	CSS	changes	can	dramatically	enhance	the	app	
o params	helper	parses	request	parameters	
o Easy	to	change	the	root	path	by	tweaking	routes.rb	

	
3.3	Deploying	to	Heroku	and	Verification	
3.3.a	Deploying	to	Heroku	

• 	
	

