John Larkin

12/28/17

Coursera: Ruby on Rails: An Introduction
Class Notes

Ruby on Rails: An Introduction

Course Highlights:

WEEK 1 — Welcome and Setting up the Development Environment
1.1 Course Introduction
* Great for rapid development
* Able to rapidly prototype
* Twitter uses RoR
* Coursel
o Basic flow of how information comes in
o Functional application

e Course 2:
o How you interact with DB
e Course 3:

o Really dives in on this and how you interact well with MongoDB and RoR
o Implementation of NoSQL DB
¢ Course 4:
o RESTApi is used commonly (FB, Twitter)
o Full stack web developer — service side could be great, but we still need to care
about the client facing side, i.e. frontend
o User interaction needs to be perfect
o HTML, CSS, JavaScript — design and turn it into real website
* Course5:
o Angular)S addresses a ton of the issues with front end web dev
o Helps to make things faster
o You'll be able to build a full website where majority of lift is on client side
* Capstone: which I’'m not going to do really

Module 1: Setting up the Dev Env
¢ 3 topics

o Software installation
= |nstallation of Ruby and RoR

o Coding editors
= Probably sublime

o Git
= Duh VCS
= @Going to deploy to the cloud
= @Going to be helpful when deploying an application

Remote Repos and Github

John Larkin
12/28/17

Coursera: Ruby on Rails: An Introduction

Linke remote repo with your local repo

o Git remote add alias remote_url
origin — default alias for a cloned repo
Most of this is default git

WEEK 2 — Introduction to Ruby

2.0 Getting to Know Ruby
2.0.a Ruby Basics

History

o Invented by Yukihiro Matsumoto

o Popularized by Ruby on Rails framework
Dynamic, OO, Elegant, expressive, and declarative
Designed to make programmers happy

So like this is going to be iterating over something three times:

o 3.times
Ruby basics
o #tocomment
o 2 space indentation for each nested level
o Everything is evaluated
Printing to console
O puts
= print string to console; as in put string

Class Notes

Ol
= Prints out internal representation of object — great for debugging.
Variables
o snake_case
Constants

o ALL_CAPS or FirstCap
Classes (and Modules)

o CamelCase
Semicolons

o Don’t need them. Don’t include them.
Extremely expressive

2.0.b. Flow of Control

if / elsif/ else
o No parentheses or curly races
o Use end to close flow control block
o

case

until / unless?

John Larkin

12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o unless — basically, if something is not equal to something else
= essentially like a not equal to
o until = opposite of while; executes until a condition is met
while / for
Triple equals
Flow of control: modifier form (meaning a ton of stuff on one line)
Only things that are false are:
o nil object
o false object
Triple equals
o Use double equal most of the time
o Equalin its own way
o Special kind of equals
o You can use this with regex
Case expressions
o Similar to a series of if statements
= age=21
o case
o whenage>=21
O puts ...
o whenl==
O puts ...
o Specify a target next to case and each when clause is compared to target
= Solike

= Name = ‘Fisher’
= case name
= when # comparison to name
= when # comparison to name
o No fall through logic
o The only case that actually matches gets executed
For loop
o foriin0..2
o putsi
o end
o but most commonly, each / times preferred

2.0.c. Functions

Functions/methods

o Function is defined outside of a class

o Method is defined inside a class

o However, in Ruby they are all methods
Methods

John Larkin
12/28/17

Coursera: Ruby on Rails: An Introduction

o Parentheses are option when defining and calling a method
o Used for clarity
No need to declare type of parameters
Return keyword is optional — last executed line is returned
Expressive method names
o Method names can end with:
= ?—predicate methods (normally return boolean values)
= | —dangerous side effects
o Also note: number.zero is a method
Default arguments
o Pretty simple
o def factorial_with_default(n=5)
= n==07?1:n *factorial_with_default(n-1)
o end
Splat
o * prefixes parameter inside
o Can apply to middle parameter or any one

2.0.d Blocks

Basically, chunks of code that get executed
Enclosed between either curly braces {} or the do and end blocks
Passed in as the last argument
Convention
o Use {} when block content is single line
o Do and end when block content spans multiple lines
o Often used as iterators
Examples
1.times { puts “Hello World!”}
2.times do |index|
ifindex >0
puts index
end
o end
Coding with blocks
o Implicit:
= Use block_given? to see if block was passed in
= Usevyield to “call” the block
= Ex:
¢ def two_times_implicit
* return “No block” unless block_given?
* vyield
* vyield

(@]

@)
@)
@)
@)

Class Notes

John Larkin
12/28/17

Coursera: Ruby on Rails: An Introduction

* end
o Explicit:
= Use & in front of the last parameter
= Use call method to call block
= EX:
* def two_times_explicit (&i_am_a_block)
* return “No block” if i_am_a_block.nil?

* i_am_a_block.call
* i_am_a_block.call
* end

= Explicitis a little more direct
e Summary
o Just code that you can pass into methods
o Can either use blocks implicitly or explicitly

2.0.e Files
* Reading from File
o File.foreach(‘test.txt’) do |line|
o putsline
o pline

o pline.chomp # chomps off newline character at the end of the line

o pline.split # array of words in line

* Reading from Non existing file
o You would get an error pretty much immediately
o Stops execution

* Handling Exceptions
o Begin
o File.foreach(‘do not exist.txt’) do |line|
o puts line.chomp
o end
o rescue Exception=>e
o puts e.message

o puts “Let’s pretend this didn’t happen
o end

e Alternative to Exceptions
o if File.exist? ‘test.txt’

File.foreach(‘test.txt’) do |line|
puts line.chomp
end

end
o Thisis good for very simple cases

* Writing to a File

@)
@)
@)
@)

Class Notes

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o File.open(“testl.txt”, “w”) do |[file|
o file.puts “One line”
o file.puts “Another”
o end
* Environment variables
o puts ENV[“EDITOR”]
e Summary
o Files automatically closed at the end of the block
o Either use exception handling or check for existence of the file before accessing

2.1 Collections and String APIs
2.1.a Strings
e Strings
o Single-quote literal strings are very literal
o Allow escaping of “ with \
o Show almost everything as is
o Double quoted strings interpret special characters like \n and \t
o Allow string interpolation
e Strings / Interpolation
o single_quoted = ‘ice_cream \n followed by it\’s a party!’
o double_quoted = “ice_cream \n followed by it\’s a party!”
= this will show the newline
* Interpolation is only avaialable for double-quoted strings
o def multiply (one, two)
o “#{one} multiplied by #{two} equals #{one * two}”
o end
o This converts the entire thing to a string and also does the computation
* More strings
o String methods ending with ! modify the existing string
= Most others just return a new string
o Can also use %Q{long multiline string}
= Same behavior as a double-quoted string
* Example
o My_name =“tim”
Puts my_name.lIstrip.capitalize # => Tim
P my_name # => “ tim”
My_name.lstrip! # destructive! Removed the leading space
My_name[0] = ‘K’
Puts my_name # => Kim
Cur_weather = %Q{it’s a hot day outside
grab your umbrellas...}
o Cur_weather.lines do |line|

0O O O O O O

John Larkin
12/28/17

Coursera: Ruby on Rails: An Introduction

o line.sub! ‘hot’, ‘rainy’ # substitute ‘hot’ with ‘rainy
e Strings API
o include? other string
* Symbols
o :foo - highly optimized string
o Constant names that you don’t have to pre-declare
o “Stands for something” string type

* Symbols (cont)

O
O
O

Guaranteed to be unique and immutable
Can be converted to a String with to_s
Can convert from String to Symboll with to_sym

* Symbol can be representation of a method name
* Symbols and Strings are similar... you must determine which makes more sense to use
e Summary

O
O

2.1.b Arrays
* Arrays

Interpolation lets you finish your thougth
Strings have a lot of really useful API

Collection of object references (auto-expandable — no fixed size)
Indexed using []

Can be indexed with neg numbers or ranges

Heterogeneous types allowed

Can use %wf{strl str2} for string array creation

* Examples

O
O
O
O
O

O

arr_words = %w{ what a great day today! }

puts arr_words[-2] # day

puts “#{arr_words.first} - #{arr_words.last}” # what — today!
p arr_words[-3, 2] # [“great”, “day”] (go back 3 and take 2)
p arr_words[2..4]

can also do join

* Modifying Arrays

O
O
O
O

Append: push or <<
Remove pop or shift
Randomly pull elements out with sample
Sort of reverse with sort! and reverse!
= sort without exclamation returns a new copy of the array

* Examples

O

O
O
O

You want a stack?

stack = []; stack << “one”; stash.push (“two”)
puts stack.pop # two

you want a queue?

Class Notes

John Larkin
12/28/17

Coursera: Ruby on Rails: An Introduction

o Queue = []; queue.push “one”; queue.push “two”
o Puts queue.shift # one

Class Notes

o If you specify and insert into an index that is beyond the range, it’s going to

create nils for everything else
Other Array Methods
o each-loop through array
= takes a block
o select —filter array by selecting
= takes a block
o reject —filter array by rejecting
= pretty much the opposite of the one above
o map — modify each element in the array

= maps every element to a new element based on the block passed in

Important api: http://ruby-doc.org/core-2.2.0/Array.html
Example

o a=[1,3,4,7,8,10]

o new_arr=a.select { |num| num < 10}

.reject { |[num| num.even?}

o pnew_arr#[1,3,7]
Summary

o Arrays APl is very flexible and powerful

o Lots of ways to process elements

2.1.c Ranges

Used to express natural consecutive sequences
1..20, ‘a’..’7’
Two main rules
o Two dots = all-inclusive
= 1..10 (1is included, 10 is included)
o Three dots = end-exclusive
= 1..10(1isincluded, 10 IS EXCLUDED)
o The more dots you have, the less you have at the end
Ranges
o Very efficient
o Only start and end stored
o Can be converted to an array with to_a
o Used for conditions and intervals
Examples
o puts(1..10) === 5.3 # true
o puts (‘a’...’r’) === “r" # false, end —exclusive
Summary
o Useful for consec sequences

John Larkin
12/28/17

Coursera: Ruby on Rails: An Introduction

o Convert a range to an array for more functionality

2.1.d Hashes

Hashes
o Indexed collection of object references
o Created with either {} or Hash.new
o Also known as associative arrays
o Index(key) can be anything
= Notjust anint asis the case with arrays
Accessed using []
o Values set using
= =>(creation)
= [] (post creation)

(@]

Example
o editor_props = { “font” => “Arial”, “size” => 12, “color” => “red}
o editor_props.length

Hashes
o Accessing a value in the Hash for which an entry does not exist
o nil is returned

Class Notes

o BUT if you create a Hash with Hash.new(0), then 0 is going to be returned

instead.
Example
o word_freq = Hash.new(0)
o sentence = “Chicka chicka boom boom”
o sentence.split.each do |word|
o word_frequency[word.downcase] += 1
o end
More hahse
o The order of putting things into Hash maintained
o If using symbols as keys, can use symbol: syntax
o If a Hash is the last argument to a method, you can drop the curlies
Block and Hash Confusion
o a_hash ={:one => “one”}
puts a_hash
can’t do puts { :one => “one”}
ruby gets confused and think it’s a block
To get around this you can use parenthesis
Or you can just drop the blocks all together

0O O O O O

2.2 Object Orientated Programming in Ruby
2.2.a Classes

OO0 Review

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o Identify things your program is edaling with
o Classes are things (blueprints)
= Containers of methods
o Objects are instances of those things
o Objects contain instance variables (state)
* |nstance variables
o Begin with @
o Not declared
= Spring into existence when first used
o Available to all instance methods of the class
* Object creation
o Classes are factories
= (Calling new method creates an instance of class
= new causes initialize
* Example
o class Person

o definitialize (name, age) # constructor
o) @name=name

o) @age = age

o end

o defget_info

o @additional_info = “Interesting”

o) “Name: #{@name}, age: #{@age}”

o end

o end

* Accessing Data
o Instance variables are private
= Cannot be accessed from outside th4e class
o Methods have public access by default
o To access instance variables, need to define getters/setter
* Example
o defname
@name
end
def name= (new_name)
@name = new_name
o end
* Easier syntax for accessing data
o attr_accessor — getter and setter
o attr_reader — getter only
o attr_writer — setter only
* Example

@)
@)
@)
@)

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o class Person
o attr_accessor :name, :age
o end
* Sometimes we want to use a more intelligent constructor
e Self
Inside instance method, self refers to the object itself
Usually using self for calling other methods of the same instance is extraneous
Sometimes using self is required
Outside instance method def, self refers to the class itself
e Summary
o Objects are created with new
o Use the short form for setting/getting data
o Don’t forget self when required

O O O O

2.2.b Class Inheritance
* || operator evaluates the left side; if true, returns it, else it returns the right side
e @x=@x || 5will retrun 5 the first time and @x the next time
* short form
o @x||=5
* This is really helpful for setting an instance variable to something the first time
* C(Class Methods
o Invoked ON the class (as opposed to an instance of the class)
o Self OUTSIDE of the method definition refers to the Class object
o Three ways to define class methods
= Class variables begin with @ @
* Example
o class MathFunctions
o def self.double(var)
o) times_called; var * 2
o end
o class << self
o) def times_called
o @@times_called | |=0; @ @times_called +=1
o end
o end
o end
o def MathFunctions.triple(var)
o times_called; var * 3
o end
* Class Inheritance
o Every class implicitly inherits from Object
o Object inherits from BasicObject

(@]

@)
@)
@)
@)
@)

2.2.c Modules

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
No multiple inheritance
= Mixins are used instead
Class SmallDog < Dog
Def bark
“barks quietly”
end
end

e Module

@)
@)

Container for classes, methods, and constants (or other modules)
Like a Class but cannot be instantiated

* Module as Namespace

o

@)
@)
@)

module Sports
= class Match
* attr_accessor :score
= end
end
module Patterns
= class Match
* attr_accessor :complete
= end
end
matchl = Sports::Match.new
match2 = Patterns::Match.new

e Module as Mixin

@)
@)
@)

Interfaces in OO
Contract defines what a class could do
Mixins provide a way to share ready code among multiple classes

* Example

o

(@]

O O O O

module SayMyName
= attr_accessor :name
= def print_name
* puts “Name: #{@name}”
= end
end
class Person
= include SayMyName
end
person = Person.new
person.name = “Joe”
person.print_name = # Name:joe

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
* Enumerable Module
o map, select, reject, detect, etc
o Used by Array class and many others
o Provide an implementation for each method
o And then you can include it in your own class
* Example
o class Player
= attr_reader :name, :age, :skill_level
= definitialize (name, age, skill_level)
®* @name =name

* (@age =age

e @skill_level
= end
= defto_s

o “<#{name}: #{skill_level}(SL), #{age}(AGE)>"
= end

o end
* Enumerable in Action
o require_relative ‘player’
o require_relative ‘team’
* Modules allow you to mixin useful code into other classes
* Require relative is useful for including other ruby files relative to the current ruby code

2.2.d Scope
* Methods and classes begin new scope for variables
* Example

o vl ="outside”
class MyClass
def my_method
p vl # exception thrown
p local_variables # prints out a list of all the local_variables
o end
* Scope constants
o Pretty intuitive
Scope block
o Blocks inherit outer scope
o Blockis a closure
= Remembers the context in which it was defined and then uses that
context whenever
Block — local scope
o Avariable created inside the block is only available to the block
o Params to the block are always local to the block

@)
@)
@)
@)

John Larkin

12/28/17

Coursera: Ruby on Rails: An Introduction
Class Notes

2.2.e Access Control
* Three levels of access control
* Controlling access
* How private is private access?
* Access control
o When designing, how much do you want to expose?
o Encapsulation: try to hide the internal representation of the object so you can
change it later
o Three levels

= Public
= Protected
= Private

* Specifying access control
o Two ways
= Specify public projected or private
* Everything until the next access control keyword will be of that
level

= Define the methods regularly and then specify public, private, protected
access level and list the comma separated methods under those levels
using method symbols

o Example
= class MyAlgorithm
= private
. def testl
= “Private”
= end
= protected
. def test2
= “Protected
= end
= end

o Example 2
= class Another

= deftestl

= “Private, as declared later”
= end

= private :testl

= end

o Access control meaning
= Public methods — no access control is enforced
= Protected methods — can be invoked by the objects of defining class or

John Larkin

12/28/17

Coursera: Ruby on Rails: An Introduction

Class Notes

subclasses
= Private methods — cannot be invoked with an explicit receiver
e Setting an attribute can be invoked with explicit receiver
e Summary
o Public and private access controls are used the most

2.3 Unit Testing with RSpec
2.3.a Introduction to Unit Testing
* Ensure your code works
* Serves as documentation for devs
e Refactor to make sure you didn’t break anything
* Enter Test::Unit
o Ruby takes testing very seriously
Has Test::Unit shipped with it
Ruby 1.9 stripped Test::Unit to a minimum
Member of the XUnit family (Junit, CppUnit)
Basic idea: extend Test::Unit::TestCase
Prefix method names with test_
If one of the methods fails, others keep going (good thing)
Can use setup() and teardown() methods for setting up behavior that will
execute before every test method
* Example
o class Calculator
= attr_reader :name
= definitialize(name)
* @name=name
= end
= defadd(one,two)
* one-two
= end
o Then your testing would look like:
= require ‘test/unit’
= require_relative ‘calculator’
= class CalculatorTest < Test::Unit::TestCase
e defsetup
o @calc = Calculator.new(‘test’)
* end
e deftest_addition
o asset_equal 4, @calc.add(2,2)
* end
o then run ruby calculator_test.rb
o Also good mneumoic to remember is EACH

O O O O 0O O O

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
= Expected first, then actual

2.3.b Introduction to RSpec
* Testing with RSpec
o Test::Unit “does the job” but it would be nice if tests would be more descriptive,
more English-like
o The writing of the tests is more intuitive as well as the output from running the
tests
* |nstalling
o Easy... gem install rspec
* describe()
o Set of related tests (a.k.a. example group)
o Takes either a String or Class as an argument
o All specs must be inside a describe block
o No class to subclass
* before() and after() methods
o before and after methods are similar to setup and teardown
o Can pass in either :each or :all (infreq used) to specifyc whether the block will
run before/after each test or once before/after all tests
o before :all could be useful if you only want to connect to DB once
s it()
o Main logic happens inside the it() method
* Example
o require ‘rspec’
o require_relative ‘../calculator’
o describe Calculator do
= before { @calculator = Calculator.new(‘RSpec calculator’)}
= it “should add 2 numbers correctly” do
* expect(@calculator.add(2,2)).to eq 4
= end
= it “should subtract 2 numbers correctly” do
* expect(@calculator.subtract(4,2)).to eq 2
= end
o end
e Summary
o RSpec makes testing more intuitive

2.3.c RSpec Matchers
* Hands to and not_to methods on all outcome of expectations
* to()/not_to() methods take one parameter — a matcher
o be_true / be_false
o eq3

John Larkin
12/28/17

Coursera: Ruby on Rails: An Introduction

o raise_error(SomeError)
* be_predicate — boolean

Class Notes

o If the object on which the test is operating has a predicate method, you auto get

the be_predicate matcher

o Be_nil is a valid matcher because every predicate method has a :nil? Method

WEEK 3 — Introduction to Ruby on Rails
3.0 Core Concepts
3.0.a Welcome to Module 3: Introduction to Ruby on Rails
* Core principles
* Model View Controller
o Principle that applies to a lot of web frameworks as well
* Convention Over Configuration
o Following conventions helps applications be built very quickly

3.0.b Introduction to Rails
* Framework for making dynamic web applications
* Dynamic
o Content that is gotten from a database or something like that
o Htmlis just going to be static (i.e. not dynamic)
o Created by David Heinemeier Hansson
= Also a racecar driver
* Whois Using Rails?
o Hulu
o Twitter
o Github
o White pages
* Why use Rails?
o Convention Over Configuration (COC)
o Less code to write
o Learn it once and then know what to expect the next time
* Why Use Rails?
o Database Abstraction Layer
o No need to deal with low-level DB details
o No more SQL (Almost)
o ORM
= Object Relational Mapping
= Abstracting the code to interact with DB using Ruby
= Mapping your database to your Ruby Classes

* Why else?
o Agile-friendly
o DRY principle

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o Cross-platform
e SQlite
o Rails uses SQLite for database by default
o Self-contained, serverless, zero-configuration, transactional, relationsal SQL
database engine
o Claim: Most widely deployed SQL database engine in the world
* MVC: Model View Controller
o Well-established software pattern used by many web and desktop frameworks
o Separation of concerns
o Model - represents the data the application is working with (and poss business
logic)
o View - representation of that data (visually)
o Controller — interaction between model and view
* MVC Cycle

1. Request sent
MVC Cycle 2.Controller €= Model

3.Controller invokes View
4 View renders data

Q=== | Controller

S - s

View | | Model F‘“"\ DB

o
e Summary

o Rails is good with RAPID PROTOTYPING
o MVCand COC enable you to think less and do more

3.0.c Creating your First Application
* How to create and run your app
* Directory structure (CoC)
* Adding static pages to your application
* Creating First App

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o rails new appname
o rails new —h for more operations
O run
Bundler (gems manager)
o Cleans up the house and resolves dependency issues
Version Control Your Rails App
o Rails automatically generate .gitignore inside repo
o cd my_first_app
o gitinit
o gitadd.
o git commit —m “Initial commit”
Running the App
o Rails alos provides a built-in web server
o rails server
Running the App (cont)
o Good at holding your hand
o 1 use bin/rails generate to create your models and controllers
o 2setup arootroute to replace the default place
o 3 Configure your database
Directory Structure Convention
o app/ directory — controllers, views, models, helpers (most of the time)
o config/ - which database are you going to be using (and username and password)
o db/ -files related to your db and migration scripts (how to change from one
database to another)
o public/ - static files. Html files. All that boring shit.
o Gemfile
o Gemfile.lock — dependencies managed by Bundler
public/hello_static.html
o Server looks into public directory before looking anywhere else
o So...if we want to add a completely static web page to our application —we can
add it under public directory

3.0.d Controller and View

How to generate controller
Actions
Embedded Ruby (ERB)
Generating a Controller
o Controllers contain actions (Ruby methods) and orchestrate web requests
o Rails can quick generate a controller and 0 or more actions with associated views
o rails generate controller controller_name [actionl action2]
Generating a Controller Example
o rails g controller greeter hello

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
* ERB (Embedded Ruby)
o Looks like html but has an .erb extension
o ERB s atemplating library (similar to jSP) that lets you embed Ruby into your
HTML
o Two tag patterns to learn:
= <% ..ruby code... %> - evaluate Ruby code
= <%= ...ruby code... %> - output evaluated Ruby code
o Whole point is to mix html static and Ruby code
* New hello.html.erb
o <% random_names = [“Alex”, “Joe”] %>
o <h1> Greetins, <%= random_names.sample %></h1>
o <p>The time now is <%= Time.now %></p>

3.0.e Routes
* Routing
* Rake
* How to analyze current routes
* Routes

o Before the controller can orchestrate where the web request goes, the request
needs to get routed to the controller
o The route for hello action was auto generated with the rails g controller
MVC(R) Cycle

1. Request sent
MVC Cycle 2.Controller €= Model

3.Controller invokes View
4 View renders data

Q=== | Controller

me 7

View | Model F"“"\ DB

o
* routes.rb

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o All the routes need to be specified in the config/routes.rb file
Let’s add the route for the goodbye action
o It'l'look like
= Rails.application.routes.draw do
* get ‘greeter/hello’ => “greeterithello”
o This syntax is saying go to controller / action
o So you can map different things to the name if you do this
o ‘greeter/hello’ => ‘greeterttwhatsgood’
* get ‘greeter/goodbye’

(@]

Rake
o Ruby’s make
o No XML — written entirely in Ruby
o Rails uses rake to automate app-related tasks
= Database, running tests, etc
o rake —tasks
Individual Rake Task
o Can zero-in on an individual rake task and what it does with —describe flag
o rake —describe task_name
o rake —describe routes
= Print out all defined routes in match order, with names. Target specific
controller with CONTROLLER=x
Rake Routes
o rake routes
Summary
o Router directs the request to the right controller
o rake routes lets you see which routes are currently defined

3.1 Diving Deeper into Rails
3.1..a Moving Business Logic Out of View

Moving business logic out of View and into Controller in order to comply with MVC
Action Methods Inside Controller
o If the action (method) is not really doinganything (i.e. empty), we can remove it
o Aslong asthere is a proper route defined and there is a properly named view
file/template, the action method does not have to be there... Rails will find the
correct template by convention
Controller: New Look
o class GreeterController < ApplicationController

= }#def hello

= Hend

= }#def goodbye
= Hend

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o This will still work totally find
o So what’s the point of having them there?
o Business logic does not belong in the View
* Moving Business Logic Out
o Instance variables from the controller are available inside the view
o class GreeterController < ApplicationController
= def hello
* random_names = [“Alex”, “Joe”, “Michael”]
* @name = random_names.sample
¢ @time =Time.now
s @times_displayed | |=0
¢ @times_displayed +=1

o end
* |nstance Variables in Rails
o Unlike some frameworks, you cannot “store” values in the controller’s instance
variables in between requests
o Alternatives?
= Session (store in the http session)
= Database (store in the database)
e Summary
o Keep business logic OUT of the view
o Instance variabels in the controller are available to view
o Instance variables do not stick around between requests

3.1.b Helpers
* Helpers and using link_to
* Helpers
o We've made the current time available through @time instance variable
o What if we wanted to format that time?
= Should it go into view? (then non-reusable)
= Controller? Should be “view” agnostic
* Helpers
o greeter_helper.rb module generated
o Let’s add a helper method
o Example
= module GreeterHelper
¢ def formatted_time(time)
o time.strftime(“%l:%M%p”)
* end
= end
= Available to ALL views

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o Thenyou can put it in the hello.html.erb file
* Rail’s Built-In Helpers: link_to
o link_to name, path
= Hyperlink generator that displayed the name and linked to the path
= Path could either be a regular string or a route defined in the routes.rb
ending with _url or _path
o Instead of specifying a path, you specify a variable, automatically changes your
page if the variable changes
o _urland _path used interchangeable, but according to the spec full path is
required in cases of redirection
* link_to in action
o #in hello.html.erb
o <p><%= link_to “Google”, “https://www.google.com” %></p>
o <p><%= link_t “Goodbye”, greeter_goodbye_path %></p>
o greeter_goodbye derived from routes.rb (see Prefix column in rake routes)
e Summary
o Helpers are “macros” / “formatters” for your view
o When using link_to there is no need to change things if a path changes

3.2 Building a Ruby on Rails Application
3.2.a Introduction to HTTParty
* Going to look at Ruby gems
* How to use HTTParty Ruby gem
* RubyGems
o Just a package manager
* What are Restful Web Services?
o Simple web services implemented using HTTP (and principles of REST) that:
= Have a base URI
= Support a data exchange format like XML or JSON
= Support a set of HTTP operations (GET, POST, etc)
o Flipping web on it’s head
o Thinkg about web as more of an MVC pattern
= Really just stores those resources and you can get it in multiple different
types of formats
= Htmlisn’t great to parse but xml and json are
e HTTParty Gem
o Restful web services client (think your browser)
o Browser is just your client from a web server
o Automatic parsing of JSON and XML into Ruby hashes
o Provides support for
= Basic http authentication
= And default request query params

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
* Lots of Restful APIs Out There
o Every self respecting web service normally has some restful api that it provides
o Inaddition to the html
o Most popular APIs?
= Facebook
= Google Maps

= Fitbit

= LinkedIn

= Bloomberg
= Twitter

= |nstagram
o The htmlis just one of the formats of information that’s stored on websites
* HTTParty Usage
o include HTTParty module
o can specify
= base_uri for your requests
= default_params (APl developer key for example)
= format to tell it which format things are coming in
o Coursera itself has a Restful API
* Specify a q request parameter
* First param is specified by ? and then others specified by &
* HTTParty Example
o require ‘httparty’
o require ‘pp’ # pretty print
o class Coursera
= include HTTParty
= base_uri ‘https://api.coursera.org/api/catalog.vl/courses’
= default_params fields: ‘smalllcon,shortDescription’ q: ‘search’
= format :json
= def self.for term
e get(“”, query: {query: term})[“elements”]
= end
o end
o pp Coursera.for “python”
o Get back a giant hash which has elements as it’s key

3.2.b Bundler
* Provides a consistent environment for Ruby projects by tracking and installing the exact
gems and versions that are needed
* Bundler
o Lets you specify gems for the Rails app inside Gemfile
o Preffered way to manage gem dependencies

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
o bundle install or bundle after specifying a new gem in the Gemfile
o You can instruct rails through Gemfile to only load certain gems in specific Rails
environment
* Which version of Gem?
o gem “thin”, “~>1.1"
o called the perssimistic version constraint
= drops the final digit, then increments to get the upper limit version
number
o so that top statement would be equiv to
o gem “thin”, “>=1.1", “< 2.0”
* Bundler require
o Occasionally, the name of the gem to be used inside require statement is
different than the name of the gem
o gem ‘sqlite3-ruby’, require: ‘sqlite3’
* Gemfile — Example
source ‘http://rubygems.org’
gem ‘rails’, ‘4.2.3’
gem ‘sqlite3’
Can change the version of rains just through bundle update
Gemfile.lock
= This file contains the actual gem versions
e Summary
o Bundler manages gem dependencies
o Loads gems on application startup

0O O O O O

3.2.c Rails and HTTParty Integration
* HTTParty Integration — Gemfile
o Specify version of httparty
o gem ‘httparty’, ‘0.13.5’
o Then shutdown server
o Run bundle
o Then you need to restart the server
* Coursera Model
o Based on convention, controllers are named plural and model is singular
* Courses Controller
o Fillin index action
e courses/index.html.erb
o image_tag creates a link to an image

3.2.d CSS, Parameters & Root Path
* Adding basic styling to our view
* Making the app more dynamic with a request parameter

John Larkin
12/28/17
Coursera: Ruby on Rails: An Introduction
Class Notes
Routing the root path
Layout
o views/layout/application.html.erb serves as view’s container (unless
overridden)
o Each individual page gets displayed inside the body of this page
o You do need to specify which css files you want to include
Terms
o Zebrafiy — when you switch between backgrounds
Adding Some CSS
o When you generate a controller, you get the controller name + .scss
o SCSS—it’s all sass
= Sass super-set of normal CSS
= You could use regular css inside sass files
O COourses.scss

= table{

* border-collapse: collapse;
.}
= td{

* padding: 12px;
.}
= even {

* background-color: #D6E55
.}

o Then you need to modify view to include CSS classes
o index.html.erb
= <h1> Searching for - <%= @search_term %></h1>
= <table border="1">
e <tr>
o <th>Image</th>
o <th>Name</th>
o </tr>
* <% @courses.each do |course| %>
o <tr class=<%= cycle(‘even’, ‘odd’) %>>
= <td><%= image_tag(course[“smalllcon”])%></td>
= <td><%= course[“name”] %></td>
= <td><%= course[“shortDescription”] %></td>
o <ftr>
* <% end>
= The cycling bit literally comes through even and odd
params helper
o it would be nice to specify the search term
o Use params Hash to retrieve the value (name of param becomes a symbol/key in

John Larkin
12/28/17

Coursera: Ruby on Rails: An Introduction

Hash
o Returns nil if request param is not passed in
o No changes to the model or the view, only to the Controller
Example
o class CoursesController < ApplicationController
= def index
* @search_term = params[:looking_for] | | ‘jhu’
* @courses = Coursera.for(@search_term)
= end
o end
This will default to ‘jhu’ if nothing is passed in
One Final Twist: RootPath
o What if we want to specify the root path?
o We can specify it to go to the index action
o Just modify routes.rb
= Root ‘courses#tindex’
= This means courses controller, action index
Summary
o Minor CSS changes can dramatically enhance the app
o params helper parses request parameters
o Easy to change the root path by tweaking routes.rb

3.3 Deploying to Heroku and Verification
3.3.a Deploying to Heroku

Class Notes

